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f;μν = f;νμequivalent to

Γμ
νσ = Γμ

σν
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But how can we get the connection from the metric?

we will try to mimic the flat spacetime!

Assumption 1: connection is torsion-free

f;μν = f;νμequivalent to

Γμ
νσ = Γμ

σν

in a flat spacetime covariant derivative = standard derivative in Cartesian coordinates

Assumption 2: the metric is covariantly constant

gμν;α = 0

There exists only one connection satisfying 1 and 2 (Levi-Civita or metric connection):

Γμ
αβ =

1
2

gμν (gνα,β + gνβ,α − gαβ,ν)Christoffel 
symbols
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Choosing a connection is equivalent to choosing a class of special coordinate systems 
at each point

at  we have  p Γμ
να(p) ≠ 0

Let  correspond to  p xμ = 0
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Choosing a connection is equivalent to choosing a class of special coordinate systems 
at each point

at  we have  p Γμ
να(p) ≠ 0

Let  correspond to  p xμ = 0

Introduce coordinates  such that yμ̄(xν)

∂2yμ̄

∂xν ∂xα
p

= Γμ
να(p)

yμ̄(p) = 0

∂yμ̄

∂xν
p

= δμ̄
ν
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= Γμ
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ν
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ν̄ᾱ(p) = 0

Xμ̄
;ν̄(p) = Xμ̄

,ν̄(p)

„Killing the connection at a single point”
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Choosing a connection is equivalent to choosing a class of special coordinate systems 
at each point

at  we have  p Γμ
να(p) ≠ 0

Let  correspond to  p xμ = 0

Introduce coordinates  such that yμ̄(xν)

∂2yμ̄

∂xν ∂xα
p

= Γμ
να(p)

yμ̄(p) = 0

∂yμ̄

∂xν
p

= δμ̄
ν

In the new coordinates we have  Γμ̄
ν̄ᾱ(p) = 0

Xμ̄
;ν̄(p) = Xμ̄

,ν̄(p)

„Killing the connection at a single point”

locally flat coordinates
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The metric in the new coordinates

 gμ̄ν̄,ᾱ(p) = gμ̄ν̄;ᾱ(p) = 0

For the Levi-Civita connection, the metric in  looks like:(yμ̄)
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The metric in the new coordinates

 gμ̄ν̄,ᾱ(p) = gμ̄ν̄;ᾱ(p) = 0

For the Levi-Civita connection, the metric in  looks like:(yμ̄)

 ⟹ gμ̄ν̄(yσ̄) = gμ̄ν̄(0) + O(y2)
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The metric in the new coordinates

 gμ̄ν̄,ᾱ(p) = gμ̄ν̄;ᾱ(p) = 0

For the Levi-Civita connection, the metric in  looks like:(yμ̄)

 ⟹ gμ̄ν̄(yσ̄) = gμ̄ν̄(0) + O(y2)

Moreover, via a simple linear transformation 

we may obtain

zμ̃(yᾱ) = Aμ̃
ᾱ yᾱ

 ⟹ gμ̃ν̃(zσ̃) = ημ̃ν̃ + O(z2) Xμ̃
;ν̃(p) = Xμ̃

,ν̃(p)



yᾱ
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The metric in the new coordinates

 gμ̄ν̄,ᾱ(p) = gμ̄ν̄;ᾱ(p) = 0

For the Levi-Civita connection, the metric in  looks like:(yμ̄)

 ⟹ gμ̄ν̄(yσ̄) = gμ̄ν̄(0) + O(y2)

Just like a slice of Minkowski (flat) space in Cartesian coordinates!

 is a great candidate for a local inertial frame at  (zμ̃) p

Moreover, via a simple linear transformation 

we may obtain

zμ̃(yᾱ) = Aμ̃
ᾱ yᾱ

 ⟹ gμ̃ν̃(zσ̃) = ημ̃ν̃ + O(z2) Xμ̃
;ν̃(p) = Xμ̃

,ν̃(p)
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Properties of the covariant derivative (metric connection)

Derivative of a tensor product

∇α(Tμν⋯
ρσ… Sκλ…

τυ…) = ∇αTμν⋯
ρσ… Sκλ…

τυ… + Tμν⋯
ρσ… ∇αSκλ…

τυ…

∇α(f Tμν⋯
ρσ…) = f,α Tμν⋯

ρσ… + f ∇αTμν⋯
ρσ…
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Properties of the covariant derivative (metric connection)

Derivative of a tensor product

∇α(Tμν⋯
ρσ… Sκλ…

τυ…) = ∇αTμν⋯
ρσ… Sκλ…

τυ… + Tμν⋯
ρσ… ∇αSκλ…

τυ…

∇α(f Tμν⋯
ρσ…) = f,α Tμν⋯

ρσ… + f ∇αTμν⋯
ρσ…

Commutes with index raising/lowering

∇α Xμ = ∇α(Xν gμν) = (∇α Xμ) gμνgiven  Xμ

potentially ambiguous,

but not really

… and with contracting indices

given  Tμ
νσ  ∇αTμ

μσ = ∇α(Tμ
νσ δμ

ν) = (∇αTμ
νσ) δμ

ν

potentially ambiguous,

but not really

∇αδμ
ν = 0 ⟹ ∇αgμν = 0

Covariant derivative of the metric

∇αgμν = 0
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 xμ(λ)Given a curve through p  xμ(0) = p

Y  xμ(λ) and a vector/tensor  at  Yμ p

 ·xμ

tangent vector ·xμ =
dxμ

dλ
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tangent vector ·xμ =
dxμ

dλ

We can define the parallel transported vector  at each

point along the curve
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Ỹμ(0) = Yμ

∇ ·xỸμ = 0

Covariant derivative in direction  or ·xμ ·xμ ∇μ
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 xμ(λ)Given a curve through p  xμ(0) = p

Y  xμ(λ) and a vector/tensor  at  Yμ p

 ·xμ

tangent vector ·xμ =
dxμ

dλ

We can define the parallel transported vector  at each

point along the curve

Ỹμ(λ)

Ỹμ(0) = Yμ

∇ ·xỸμ = 0

Covariant derivative in direction  or ·xμ ·xμ ∇μ

dYμ

dλ
+ Γμ

αβ Yα ·xβ = 0
Geometric interpretation: in locally flat coordinates

dYμ̄

dλ
= 0 constant coordinates at linear order
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Y  xμ(λ)

for general tensors

 ·xμ

dTμν…
αβ…

dλ
+ Γμ

σρ Tσν…
αβ…

·xρ + Γν
σρ Tμσ…

αβ…
·xρ + … − Γσ

αρ Tμν…
σβ…

·xρ − Γσ
βρ Tμν…

ασ…
·xρ = 0

for the metric g̃μν(λ) = gμν(xσ(λ))
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for general tensors

 ·xμ

dTμν…
αβ…
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+ Γμ

σρ Tσν…
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σρ Tμσ…

αβ…
·xρ + … − Γσ

αρ Tμν…
σβ…

·xρ − Γσ
βρ Tμν…

ασ…
·xρ = 0

for the metric g̃μν(λ) = gμν(xσ(λ))

product always conserved when parallel transporting 

(X̃μ Ỹμ)
λ

= Xμ Yμ
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Y  xμ(λ)

for general tensors

 ·xμ

dTμν…
αβ…

dλ
+ Γμ

σρ Tσν…
αβ…

·xρ + Γν
σρ Tμσ…

αβ…
·xρ + … − Γσ

αρ Tμν…
σβ…

·xρ − Γσ
βρ Tμν…

ασ…
·xρ = 0

for the metric g̃μν(λ) = gμν(xσ(λ))

product always conserved when parallel transporting 

(X̃μ Ỹμ)
λ

= Xμ Yμ

contracting/raising/lowering indices commutes with parallel transport

T̃μ
μν(λ) = T̃α

βν(λ) δβ
αX̃μ(λ) = X̃ν(λ) gμν(xσ(λ))
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Geodesics

69

Special 2n-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector 

Idea: straight line in locally flat coordinates of any point we pass: 

d2xμ̄

dλ2
= 0

p
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Special 2n-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector 

Idea: straight line in locally flat coordinates of any point we pass: 

d2xμ̄

dλ2
= 0

In general coordinates this is

We can also read that as ∇ ·x
·xμ = 0

i.e. the tangent vector is parallel-transported all the time

d2xμ

dλ2
+ Γμ

αβ
dxα

dλ
dxβ

dλ
= 0

p
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69

Special 2n-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector 

Idea: straight line in locally flat coordinates of any point we pass: 

d2xμ̄

dλ2
= 0

Initial data: xμ(0) = xμ
p

dxμ

dλ
(0) = Xμ

p

In general coordinates this is

We can also read that as ∇ ·x
·xμ = 0

i.e. the tangent vector is parallel-transported all the time

d2xμ

dλ2
+ Γμ

αβ
dxα

dλ
dxβ

dλ
= 0

p
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 xμ(λ)

 ·xμ

d
dλ ( ·xμ ·xν gμν) = 0

nulltimelike spacelike
·xμ ·xμ gμν = 0 ·xμ ·xμ gμν > 0·xμ ·xμ gμν < 0

Properties analogous to straight lines in Minkowski or Euclidean geometry

Conservation of length of the tangent vector

p
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 xμ(λ)

 ·xμ

d
dλ ( ·xμ ·xν gμν) = 0

nulltimelike spacelike
·xμ ·xμ gμν = 0 ·xμ ·xμ gμν > 0·xμ ·xμ gμν < 0

Properties analogous to straight lines in Minkowski or Euclidean geometry

Conservation of length of the tangent vector

Reparametrizations by affine transformations

λ → λ′ = A λ + B A, B = const ·xμ →
1
A

·xμ

If two geodesics share a point  and  p ·xμ
1 p

= A ·xμ
2(λ)

p

then they share the same path, i.e.  xμ
1 (λ) = xμ

2 (A λ + B)

p
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 xμ(λ)

 ·xμ

d
dλ ( ·xμ ·xν gμν) = 0

nulltimelike spacelike
·xμ ·xμ gμν = 0 ·xμ ·xμ gμν > 0·xμ ·xμ gμν < 0

Properties analogous to straight lines in Minkowski or Euclidean geometry

Conservation of length of the tangent vector

Reparametrizations by affine transformations

λ → λ′ = A λ + B A, B = const ·xμ →
1
A

·xμ

If two geodesics share a point  and  p ·xμ
1 p

= A ·xμ
2(λ)

p

then they share the same path, i.e.  xμ
1 (λ) = xμ

2 (A λ + B)

For non-null geodesics we have a preferred parametrization ·xμ ·xν gμν = ± 1

p
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M

 xμ(λ)

 ·xμ Just like in standard classical mechanics, 

the geodesic equation can be derived from a Lagrangian

Variational principle

S = ∫
λ1

λ0

L( ·xμ, xμ) dλ

L( ·xμ, xμ) =
1
2

gμν(xα) ·xμ ·xν

p



p

Geodesics

71

M

 xμ(λ)

 ·xμ Just like in standard classical mechanics, 

the geodesic equation can be derived from a Lagrangian

Variational principle

S = ∫
λ1

λ0

L( ·xμ, xμ) dλ

L( ·xμ, xμ) =
1
2

gμν(xα) ·xμ ·xν

Fix the initial and final points, vary the curve

δS = 0

xμ(λ0) = bμxμ(λ0) = aμ

⇒ d2xμ

dλ2
+ Γμ

αβ
dxα

dλ
dxβ

dλ
= 0

p
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 xμ(λ)

 ·xμ

worldlines of free-falling massive particles 

Physical interpretation in GR

Timelike geodesics

·xμ ·xμ = − 1 parametrized by proper time τ

uμ = ·xμ =
dxμ

dτ
pμ = m0 uμ

p
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M

 xμ(λ)

 ·xμ

worldlines of free-falling massive particles 

Physical interpretation in GR

Timelike geodesics

·xμ ·xμ = − 1 parametrized by proper time τ

uμ = ·xμ =
dxμ

dτ

Null geodesics

·xμ ·xμ = 0

worldlines of massless particles (photons etc.), light rays

pμ = m0 uμ

p
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End of lecture 5


