(Pseudo-)Riemannian manifolds

But how can we get the connection from the metric?
we will try to mimic the flat spacetime!
in a flat spacetime covariant derivative $=$ standard derivative in Cartesian coordinates

(Pseudo-)Riemannian manifolds

But how can we get the connection from the metric?

we will try to mimic the flat spacetime!
in a flat spacetime covariant derivative = standard derivative in Cartesian coordinates
Assumption 1: connection is torsion-free

$$
\Gamma_{\nu \sigma}^{\mu}=\Gamma^{\mu}{ }_{\sigma \nu}
$$

equivalent to $\quad f_{; \mu \nu}=f_{; \nu \mu}$

(Pseudo-)Riemannian manifolds

But how can we get the connection from the metric?

we will try to mimic the flat spacetime!
in a flat spacetime covariant derivative $=$ standard derivative in Cartesian coordinates
Assumption 1: connection is torsion-free

$$
\Gamma^{\mu}{ }_{\nu \sigma}=\Gamma^{\mu}{ }_{\sigma \nu}
$$

equivalent to $\quad f_{; \mu \nu}=f_{; \nu \mu}$

Assumption 2: the metric is covariantly constant

$$
g_{\mu \nu ; \alpha}=0
$$

(Pseudo-)Riemannian manifolds

But how can we get the connection from the metric?

we will try to mimic the flat spacetime!
in a flat spacetime covariant derivative = standard derivative in Cartesian coordinates
Assumption 1: connection is torsion-free

$$
\Gamma_{\nu \sigma}^{\mu}=\Gamma^{\mu}{ }_{\sigma \nu}
$$

equivalent to $\quad f_{; \mu \nu}=f_{; \nu \mu}$

Assumption 2: the metric is covariantly constant

$$
g_{\mu \nu ; \alpha}=0
$$

There exists only one connection satisfying 1 and 2 (Levi-Civita or metric connection):

$$
\Gamma_{\alpha \beta}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(g_{\nu \alpha, \beta}+g_{\nu \beta, \alpha}-g_{\alpha \beta, \nu}\right)
$$

(Pseudo-)Riemannian manifolds

But how can we get the connection from the metric?

we will try to mimic the flat spacetime!
in a flat spacetime covariant derivative = standard derivative in Cartesian coordinates
Assumption 1: connection is torsion-free

$$
\Gamma_{\nu \sigma}^{\mu}=\Gamma^{\mu}{ }_{\sigma \nu}
$$

equivalent to $\quad f_{; \mu \nu}=f_{; \nu \mu}$

Assumption 2: the metric is covariantly constant

$$
g_{\mu \nu ; \alpha}=0
$$

There exists only one connection satisfying 1 and 2 (Levi-Civita or metric connection):

(Pseudo-)Riemannian manifolds

Choosing a connection is equivalent to choosing a class of special coordinate systems at each point

Let p correspond to $x^{\mu}=0$
at p we have $\Gamma^{\mu}{ }_{\nu \alpha}(p) \neq 0$

M

(Pseudo-)Riemannian manifolds

Choosing a connection is equivalent to choosing a class of special coordinate systems at each point

Let p correspond to $x^{\mu}=0$
at p we have $\Gamma^{\mu}{ }_{\nu \alpha}(p) \neq 0$

Introduce coordinates $y^{\bar{\mu}}\left(x^{\nu}\right)$ such that $\quad y^{\bar{\mu}}(p)=0$

$$
\left.\frac{\partial y^{\bar{\mu}}}{\partial x^{\nu}}\right|_{p}=\left.\delta_{\nu}^{\bar{\mu}} \quad \frac{\partial^{2} y^{\bar{\mu}}}{\partial x^{\nu} \partial x^{\alpha}}\right|_{p}=\Gamma_{\nu \alpha}^{\mu}(p)
$$

M

(Pseudo-)Riemannian manifolds

Choosing a connection is equivalent to choosing a class of special coordinate systems at each point

Let p correspond to $x^{\mu}=0$
at p we have $\Gamma^{\mu}{ }_{\nu \alpha}(p) \neq 0$

Introduce coordinates $y^{\bar{\mu}}\left(x^{\nu}\right)$ such that $\quad y^{\bar{u}}(p)=0$

$$
\left.\frac{\partial y^{\bar{\mu}}}{\partial x^{\nu}}\right|_{p}=\left.\delta_{\nu}^{\bar{\mu}} \quad \frac{\partial^{2} y^{\bar{\mu}}}{\partial x^{\nu} \partial x^{\alpha}}\right|_{p}=\Gamma_{\nu \alpha}^{\mu}(p)
$$

In the new coordinates we have $\Gamma^{\bar{\nu}}{ }_{\bar{\alpha}}(p)=0$

$$
X^{\bar{\mu}}{ }_{; \bar{L}}(p)=X^{\bar{\mu}}{ }_{, \bar{L}}(p)
$$

"Killing the connection at a single point"

(Pseudo-)Riemannian manifolds

Choosing a connection is equivalent to choosing a class of special coordinate systems at each point

Let p correspond to $x^{\mu}=0$
at p we have $\Gamma^{\mu}{ }_{\nu \alpha}(p) \neq 0$

Introduce coordinates $y^{\bar{\mu}}\left(x^{\nu}\right)$ such that $\quad y^{\bar{u}}(p)=0$

$$
\left.\frac{\partial y^{\bar{\mu}}}{\partial x^{\nu}}\right|_{p}=\left.\delta_{\nu}^{\bar{\mu}} \quad \frac{\partial^{2} y^{\bar{\mu}}}{\partial x^{\nu} \partial x^{\alpha}}\right|_{p}=\Gamma_{\nu \alpha}^{\mu}(p)
$$

In the new coordinates we have $\Gamma^{\bar{\nu}}{ }_{\bar{\alpha}}(p)=0$

$$
X^{\bar{\mu}}{ }_{; \bar{\sim}}(p)=X^{\bar{\mu}}{ }_{, \bar{L}}(p)
$$

locally flat coordinates
"Killing the connection at a single point"

(Pseudo-)Riemannian manifolds

The metric in the new coordinates

For the Levi-Civita connection, the metric in $\left(y^{\bar{\mu}}\right)$ looks like:

$$
g_{\bar{\mu}, \bar{\alpha}}(p)=g_{\bar{\mu} \bar{u} ; \bar{\alpha}}(p)=0
$$

M

(Pseudo-)Riemannian manifolds

The metric in the new coordinates

For the Levi-Civita connection, the metric in $\left(y^{\bar{\mu}}\right)$ looks like:

$$
\begin{aligned}
g_{\bar{\mu} \bar{\nu}, \bar{\alpha}}(p) & =g_{\bar{\mu} \bar{\nu} ; \bar{\alpha}}(p)=0 \\
\Longrightarrow g_{\bar{\mu} \bar{L}}\left(y^{\bar{\sigma}}\right) & =g_{\bar{\mu} \bar{\nu}}(0)+O\left(y^{2}\right)
\end{aligned}
$$

M

(Pseudo-)Riemannian manifolds

The metric in the new coordinates

For the Levi-Civita connection, the metric in $\left(y^{\bar{\mu}}\right)$ looks like:

$$
\begin{aligned}
g_{\bar{\mu} \bar{\nu}, \bar{\alpha}}(p) & =g_{\overline{\mu \bar{\nu}} ; \bar{\alpha}}(p)=0 \\
\Longrightarrow g_{\bar{\mu} \bar{\nu}}\left(y^{\bar{\sigma}}\right) & =g_{\bar{\mu} \bar{\nu}}(0)+O\left(y^{2}\right)
\end{aligned}
$$

Moreover, via a simple linear transformation $z^{\tilde{\mu}}\left(y^{\bar{\alpha}}\right)=A^{\tilde{\mu}}{ }_{\bar{\alpha}} y^{\bar{\alpha}}$ we may obtain

$$
\Longrightarrow g_{\tilde{\mu} \tilde{\nu}}\left(z^{\tilde{\sigma}}\right)=\eta_{\tilde{\mu} \tilde{\nu}}+O\left(z^{2}\right) \quad X^{\tilde{\mu}}{ }_{; \tilde{\nu}}(p)={X^{\tilde{\mu}}}_{, \tilde{\nu}}(p)
$$

M

(Pseudo-)Riemannian manifolds

The metric in the new coordinates

For the Levi-Civita connection, the metric in $\left(y^{\bar{\mu}}\right)$ looks like:

$$
\begin{aligned}
g_{\bar{\mu} \bar{\nu}, \bar{\alpha}}(p) & =g_{\overline{\mu \bar{\nu}} ; \bar{\alpha}}(p)=0 \\
\Longrightarrow g_{\bar{\mu} \bar{L}}\left(y^{\bar{\sigma}}\right) & =g_{\bar{\mu} \bar{\nu}}(0)+O\left(y^{2}\right)
\end{aligned}
$$

Moreover, via a simple linear transformation $z^{\tilde{\mu}}\left(y^{\bar{\alpha}}\right)=A^{\tilde{\mu}}{ }_{\bar{\alpha}} y^{\bar{\alpha}}$ we may obtain

$$
\Longrightarrow g_{\tilde{\mu} \tilde{\nu}}\left(z^{\tilde{\sigma}}\right)=\eta_{\tilde{\mu} \tilde{\nu}}+O\left(z^{2}\right) \quad X^{\tilde{\mu}}{ }_{; \tilde{\nu}}(p)={X^{\tilde{\mu}}}_{, \tilde{\nu}}(p)
$$

M

Just like a slice of Minkowski (flat) space in Cartesian coordinates!
$\left(z^{\tilde{\mu}}\right)$ is a great candidate for a local inertial frame at p

(Pseudo-)Riemannian manifolds

Properties of the covariant derivative (metric connection)
Derivative of a tensor product

$$
\begin{aligned}
& \nabla_{\alpha}\left(T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots \ldots}\right)=\nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots}+T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} \nabla_{\alpha} S^{\kappa \lambda \ldots}{ }_{\tau 0 \ldots} \\
& \nabla_{\alpha}\left(f T^{\mu \nu \ldots \ldots}\right)=f_{, \alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}+f \nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}
\end{aligned}
$$

(Pseudo-)Riemannian manifolds

Properties of the covariant derivative (metric connection)
Derivative of a tensor product

$$
\begin{aligned}
& \nabla_{\alpha}\left(T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots}\right)=\nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots \ldots}{ }_{\tau v \ldots}+T^{\mu \nu \ldots \ldots} \nabla_{\alpha} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots} \\
& \nabla_{\alpha}\left(f T^{\mu \nu \ldots}\right)=f_{, \alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}+f \nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}
\end{aligned}
$$

Covariant derivative of the metric

$$
\nabla_{\alpha} g_{\mu \nu}=0 \quad \nabla_{\alpha} \delta^{\mu}{ }_{\nu}=0 \quad \Longrightarrow \nabla_{\alpha} g^{\mu \nu}=0
$$

(Pseudo-)Riemannian manifolds

Properties of the covariant derivative (metric connection)

Derivative of a tensor product

$$
\begin{aligned}
& \nabla_{\alpha}\left(T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}{ }^{\kappa \lambda \ldots}{ }_{\tau v \ldots}\right)=\nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots}+T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} \nabla_{\alpha} S^{\kappa \lambda \ldots}{ }_{\tau 0 \ldots} \\
& \nabla_{\alpha}\left(f T^{\mu \nu \ldots \ldots}\right)=f_{, \alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}+f \nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}
\end{aligned}
$$

Covariant derivative of the metric

$$
\nabla_{\alpha} g_{\mu \nu}=0 \quad \nabla_{\alpha} \delta^{\mu}{ }_{\nu}=0 \quad \Longrightarrow \nabla_{\alpha} g^{\mu \nu}=0
$$

Commutes with index raising/lowering
given X^{μ}

$$
\begin{gathered}
\nabla_{\alpha} X_{\mu}=\nabla_{\alpha}\left(X^{\nu} g_{\mu \nu}\right)=\left(\nabla_{\alpha} X^{\mu}\right) g_{\mu \nu} \\
\begin{array}{c}
\text { potentially ambiguous, } \\
\text { but not really }
\end{array}
\end{gathered}
$$

(Pseudo-)Riemannian manifolds

Properties of the covariant derivative (metric connection)

Derivative of a tensor product

$$
\begin{aligned}
& \nabla_{\alpha}\left(T^{\mu \nu \cdots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots}\right)=\nabla_{\alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots}+T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots} \nabla_{\alpha} S^{\kappa \lambda \ldots}{ }_{\tau v \ldots} \\
& \nabla_{\alpha}\left(f T^{\mu \nu \cdots}{ }_{\rho \sigma \ldots}\right)=f_{, \alpha} T^{\mu \nu \ldots}{ }_{\rho \sigma \ldots}+f \nabla_{\alpha} T^{\mu \nu \cdots}{ }_{\rho \sigma \ldots}
\end{aligned}
$$

Covariant derivative of the metric

$$
\nabla_{\alpha} g_{\mu \nu}=0 \quad \nabla_{\alpha} \delta^{\mu}{ }_{\nu}=0 \quad \Longrightarrow \nabla_{\alpha} g^{\mu \nu}=0
$$

Commutes with index raising/lowering

$$
\text { given } X^{\mu}
$$

$$
\nabla_{\alpha} X_{\mu}=\nabla_{\alpha}\left(X^{\nu} g_{\mu \nu}\right)=\left(\nabla_{\alpha} X^{\mu}\right) g_{\mu \nu}
$$

potentially ambiguous, but not really

Parallel transport

Parallel transport

Given a curve through $p \quad x^{\mu}(\lambda) \quad x^{\mu}(0)=p$

$$
\begin{aligned}
& \text { tangent vector } \dot{x}^{\mu}=\frac{d x^{\mu}}{d \lambda} \\
& \text { and a vector/tensor } Y^{\mu} \text { at } p
\end{aligned}
$$

We can define the parallel transported vector $\tilde{Y}^{\mu}(\lambda)$ at each point along the curve

$$
\tilde{Y}^{\mu}(0)=Y^{\mu}
$$

$$
\nabla_{\dot{x}} \tilde{Y}^{\mu}=0
$$

Covariant derivative in direction \dot{x}^{μ} or $\dot{x}^{\mu} \nabla_{\mu}$

Parallel transport

Given a curve through $p \quad x^{\mu}(\lambda) \quad x^{\mu}(0)=p$

$$
\begin{aligned}
& \text { tangent vector } \dot{x}^{\mu}=\frac{d x^{\mu}}{d \lambda} \\
& \text { and a vector/tensor } Y^{\mu} \text { at } p
\end{aligned}
$$

We can define the parallel transported vector $\tilde{Y}^{\mu}(\lambda)$ at each point along the curve

$$
\tilde{Y}^{\mu}(0)=Y^{\mu}
$$

$$
\nabla_{\dot{x}} \tilde{Y}^{\mu}=0
$$

Covariant derivative in direction \dot{x}^{μ} or $\dot{x}^{\mu} \nabla_{\mu}$

$$
\frac{d Y^{\mu}}{d \lambda}+\Gamma_{\alpha \beta}^{\mu} Y^{\alpha} \dot{x}^{\beta}=0
$$

Geometric interpretation: in locally flat coordinates

$$
\frac{d Y^{\bar{\mu}}}{d \lambda}=0 \quad \text { constant coordinates at linear order }
$$

Parallel transport

for general tensors

$$
\begin{aligned}
& \frac{d^{\mu \nu \ldots \ldots}}{d \lambda}+\Gamma^{\mu}{ }_{\sigma \rho} T^{\sigma \nu \ldots}{ }_{\alpha \beta \ldots} \dot{x}^{\rho}+\Gamma^{\nu}{ }_{\sigma \rho} T^{\mu \sigma \ldots}{ }_{\alpha \beta \ldots \ldots} \dot{x}^{\rho}+\ldots-\Gamma^{\sigma}{ }_{\alpha \rho} T^{\mu \nu \ldots}{ }_{\sigma \beta \ldots} \dot{x}^{\rho}-\Gamma^{\sigma}{ }_{\beta \rho} T^{\mu \nu \ldots}{ }_{\alpha \sigma \ldots} \dot{x}^{\rho}=0 \\
& \quad \text { for the metric } \quad \tilde{g}_{\mu \nu}(\lambda)=g_{\mu \nu}\left(x^{\sigma}(\lambda)\right)
\end{aligned}
$$

M

Parallel transport

for general tensors

$$
\frac{d T^{\mu \nu \ldots}{ }_{\alpha \beta \ldots}}{d \lambda}+\Gamma^{\mu}{ }_{\sigma \rho} T^{\sigma \nu \ldots}{ }_{\alpha \beta \ldots} \dot{x}^{\rho}+\Gamma^{\nu}{ }_{\sigma \rho} T^{\mu \sigma \ldots}{ }_{\alpha \beta \ldots} \dot{x}^{\rho}+\ldots-\Gamma^{\sigma}{ }_{\alpha \rho} T^{\mu \nu \ldots}{ }_{\sigma \beta \ldots} \dot{x}^{\rho}-\Gamma^{\sigma}{ }_{\beta \rho} T^{\mu \nu \ldots}{ }_{\alpha \sigma \ldots} \dot{x}^{\rho}=0
$$

for the metric

$$
\tilde{g}_{\mu \nu}(\lambda)=g_{\mu \nu}\left(x^{\sigma}(\lambda)\right)
$$

product always conserved when parallel transporting

$$
\left.\left(\tilde{X}^{\mu} \tilde{Y}_{\mu}\right)\right|_{\lambda}=X^{\mu} Y_{\mu}
$$

M

Parallel transport

for general tensors

$$
\frac{d T^{\mu \nu \ldots}{ }_{\alpha \beta \ldots}}{d \lambda}+\Gamma^{\mu}{ }_{\sigma \rho} T^{\sigma \nu \ldots}{ }_{\alpha \beta \ldots} \dot{x}^{\rho}+\Gamma^{\nu}{ }_{\sigma \rho} T^{\mu \sigma \ldots}{ }_{\alpha \beta \ldots} \dot{x}^{\rho}+\ldots-\Gamma^{\sigma}{ }_{\alpha \rho} T^{\mu \nu \ldots}{ }_{\sigma \beta \ldots} \dot{x}^{\rho}-\Gamma^{\sigma}{ }_{\beta \rho} T^{\mu \nu \ldots}{ }_{\alpha \sigma \ldots} \dot{x}^{\rho}=0
$$

for the metric

$$
\tilde{g}_{\mu \nu}(\lambda)=g_{\mu \nu}\left(x^{\sigma}(\lambda)\right)
$$

product always conserved when parallel transporting

$$
\left.\left(\tilde{X}^{\mu} \tilde{Y}_{\mu}\right)\right|_{\lambda}=X^{\mu} Y_{\mu}
$$

contracting/raising/lowering indices commutes with parallel transport

$$
\tilde{X}_{\mu}(\lambda)=\tilde{X}^{\nu}(\lambda) g_{\mu \nu}\left(x^{\sigma}(\lambda)\right) \quad \tilde{T}^{\mu}{ }_{\mu \nu}(\lambda)=\tilde{T}^{\alpha}{ }_{\beta \nu}(\lambda) \delta^{\beta}{ }_{\alpha}
$$

Geodesics

Special $2 n$-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector
Idea: straight line in locally flat coordinates of any point we pass:

$$
\frac{d^{2} x^{\bar{u}}}{d \lambda^{2}}=0
$$

M

Geodesics

Special $2 n$-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector
Idea: straight line in locally flat coordinates of any point we pass:

$$
\frac{d^{2} x^{\bar{u}}}{d \lambda^{2}}=0
$$

In general coordinates this is

$$
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma^{\mu}{ }_{\alpha \beta} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0
$$

We can also read that as $\nabla_{\dot{x}} \dot{x}^{\mu}=0$
i.e. the tangent vector is parallel-transported all the time

Geodesics

Special $2 n$-parameter family curves defined by the geometry

Curve defined uniquely by a point + tangent vector
Idea: straight line in locally flat coordinates of any point we pass:

$$
\frac{d^{2} x^{\bar{u}}}{d \lambda^{2}}=0
$$

In general coordinates this is

$$
\frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma^{\mu}{ }_{\alpha \beta} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0
$$

We can also read that as $\nabla_{\dot{x}} \dot{x}^{\mu}=0$
i.e. the tangent vector is parallel-transported all the time

$$
\begin{array}{ll}
\text { Initial data: } & x^{\mu}(0)
\end{array}=x_{p}^{\mu}, ~=\frac{d x^{\mu}}{d \lambda}(0)=X_{p}^{\mu}
$$

Geodesics

Properties analogous to straight lines in Minkowski or Euclidean geometry

$$
\begin{array}{ccl}
\text { Conservation of length of the tangent vector } & \frac{d}{d \lambda}\left(\dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}\right)=0 \\
\text { timelike } & \text { null } & \text { spacelike } \\
\dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}<0 & \dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}=0 & \dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}>0
\end{array}
$$

M

Geodesics

Properties analogous to straight lines in Minkowski or Euclidean geometry
Conservation of length of the tangent vector $\frac{d}{d \lambda}\left(\dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}\right)=0$

$$
\begin{array}{cc}
\text { timelike } & \text { null } \\
\dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}<0 & \dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}=0
\end{array}
$$

spacelike

$$
\dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}>0
$$

Reparametrizations by affine transformations

$$
\lambda \rightarrow \lambda^{\prime}=A \lambda+B \quad A, B=\mathrm{const} \quad \quad \dot{x}^{\mu} \rightarrow \frac{1}{A} \dot{x}^{\mu}
$$

If two geodesics share a point p and $\left.\dot{x}_{1}^{\mu}\right|_{p}=\left.A \dot{x}_{2}^{\mu}(\lambda)\right|_{p}$
then they share the same path, i.e. $x_{1}^{\mu}(\lambda)=x_{2}^{\mu}(A \lambda+B)$

Geodesics

Properties analogous to straight lines in Minkowski or Euclidean geometry

Conservation of length of the tangent vector $\frac{d}{d \lambda}\left(\dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}\right)=0$

$$
\begin{array}{ccl}
\text { timelike } & \text { null } & \text { spacelike } \\
\dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}<0 & \dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}=0 & \dot{x}^{\mu} \dot{x}^{\mu} g_{\mu \nu}>0
\end{array}
$$

Reparametrizations by affine transformations

$$
\lambda \rightarrow \lambda^{\prime}=A \lambda+B \quad A, B=\mathrm{const} \quad \quad \dot{x}^{\mu} \rightarrow \frac{1}{A} \dot{x}^{\mu}
$$

If two geodesics share a point p and $\left.\dot{x}_{1}^{\mu}\right|_{p}=\left.A \dot{x}_{2}^{\mu}(\lambda)\right|_{p}$
then they share the same path, i.e. $x_{1}^{\mu}(\lambda)=x_{2}^{\mu}(A \lambda+B)$

For non-null geodesics we have a preferred parametrization

$$
\dot{x}^{\mu} \dot{x}^{\nu} g_{\mu \nu}= \pm 1
$$

Geodesics

Variational principle

Just like in standard classical mechanics, the geodesic equation can be derived from a Lagrangian

$$
\begin{aligned}
& S=\int_{\lambda_{0}}^{\lambda_{1}} L\left(\dot{x}^{\mu}, x^{\mu}\right) d \lambda \\
& L\left(\dot{x}^{\mu}, x^{\mu}\right)=\frac{1}{2} g_{\mu \nu}\left(x^{\alpha}\right) \dot{x}^{\mu} \dot{x}^{\nu}
\end{aligned}
$$

M

Geodesics

Variational principle

Just like in standard classical mechanics, the geodesic equation can be derived from a Lagrangian

$$
\begin{aligned}
& S=\int_{\lambda_{0}}^{\lambda_{1}} L\left(\dot{x}^{\mu}, x^{\mu}\right) d \lambda \\
& L\left(\dot{x}^{\mu}, x^{\mu}\right)=\frac{1}{2} g_{\mu \nu}\left(x^{\alpha}\right) \dot{x}^{\mu} \dot{x}^{\nu}
\end{aligned}
$$

Fix the initial and final points, vary the curve
M

$$
\begin{aligned}
& x^{\mu}\left(\lambda_{0}\right)=a^{\mu} \quad x^{\mu}\left(\lambda_{0}\right)=b^{\mu} \\
& \delta S=0 \\
& \Rightarrow \frac{d^{2} x^{\mu}}{d \lambda^{2}}+\Gamma^{\mu}{ }_{\alpha \beta} \frac{d x^{\alpha}}{d \lambda} \frac{d x^{\beta}}{d \lambda}=0
\end{aligned}
$$

Geodesics

Physical interpretation in GR

Timelike geodesics
worldlines of free-falling massive particles

$$
\begin{array}{ll}
\dot{x}^{\mu} \dot{x}_{\mu}=-1 & \text { parametrized by proper time } \tau \\
u^{\mu}=\dot{x}^{\mu}=\frac{d x^{\mu}}{d \tau} & p^{\mu}=m_{0} u^{\mu}
\end{array}
$$

Geodesics

Physical interpretation in GR

Timelike geodesics
worldlines of free-falling massive particles

$$
\begin{array}{ll}
\dot{x}^{\mu} \dot{x}_{\mu}=-1 & \text { parametrized by proper time } \tau \\
u^{\mu}=\dot{x}^{\mu}=\frac{d x^{\mu}}{d \tau} & p^{\mu}=m_{0} u^{\mu}
\end{array}
$$

Null geodesics
worldlines of massless particles (photons etc.), light rays

$$
\dot{x}^{\mu} \dot{x}_{\mu}=0
$$

End of lecture 5

M

