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Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface

set that can be parametrized by n numbers (coordinates) near any point

we can use the machinery of multivariate calculus (differentiation, integration)
on a manifold

we can use tensor algebra on a manifold

most important notion:
local coordinate system(s)
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many manifolds do not have a single,
global chart
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Manifold - M, { (% o Cba)'}\

topological space atlas of charts (coordinate systems)

Rl’l

charts are usually local

¢ (%))

many manifolds do not have a single,
global chart

transition maps

R" L% Ly = (L a2 X
coordinate transforms

We can always define new charts
(enlarge the atlas), by picking
the domain and transition maps
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Vectors

vectors always defined at a point

vectors at different points form different vector spaces
(tangent spaces), we cannot add or combine them!

vectors do not connect distant points

dimension of tangent spaces dim7,M = n

geometric intuitions

infinitesimal variation a point (or its coordinates)

Sx! = X[i o€

tangent vector/velocity

vi _ dx’
P da
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Vectors transformation laws under coordinate transform
L2 o9y = (e X%, ., x™)

v,y

x <y’7> given functions

- dy!
X =—
Pda
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Vectors transformation laws under coordinate transform
OLY2, oy - (X2 X
xk <y’7> given functions
X ﬂ
P da
l. dxt  ox dy’T
p = T T T T chain rule
di  oy'|, di
i % ox' vi
= X, = X, ? p
Yolp

_ < 0x > }
Jacobian | —
dy
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Co-vectors co-vectors also always defined at a point

co-vectors at different points form different vector spaces
(co-tangent spaces), we cannot add or combine them!

dimension of co-tangent spaces dim 7;M = n

geometric intuitions

infinitesimal variation of a function

gradient

0
M w{(p) = —f

i
6xp
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Co-vectors transformation laws under coordinate transform
L2 o9y = (e X%, ., x™)

v,y

x <y’7> given functions

Y
w;(p) = oy

P

of of 9
oxi gyl oxi

chain rule
P

w{(p) =

= wi(p) = w{p) = wi(p) - a—yi
X

P
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Co-vectors transformation laws under coordinate transform

2

A A O N CLE S )

xk <y’7> given functions

=
w;(p) = oy

P

of of 9
oxi gyl oxi

w(p) = chain rule

P

= wi(p) - w(p) = wip) - ai
X

P

R | | | ( . > < s > _1
- = 0" inverse Jacobian | — | = | —
dy/  oxk ox dy
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Tensors transformation laws under coordinate transform

A A O N CLE S )

x <y’7> given functions

T" “‘,-d-“_(p) tensor coordinates in <le )
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Tensors transformation laws under coordinate transform

2

A A O N CLE S )

xk <y’7> given functions

TV o (D) tensor coordinates in (y’T )

e o (57) = (57)
inverse Jacobian | — | = | —
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Remarks

We usually work with vector/co-vector/tensor fields T, (x™)

/\

Need to change the argument
when changing coordinates

At each (co-)tangent space we are decomposing tensors in so-called coordinate basis,
related to a given coordinate system (say (x')). The basis usually isn’t orthonormal.

. . .0

P

k(p) = k(p) ®' = k(p) dx’

It is possible to use bases unrelated to the current coordinate system,
or bases unrelated to any coordinate system (non-coordinate bases)

Coordinate transformations = very important thing in GR, we will practice that.
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Manifold + tensor field coordinate systems representation in coordinates
(coordinate bases) (in coordinate basis)
A Rn

Rl’l

o7



Differential geometry

End of Lecture 3
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