Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface

Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface
set that can be parametrized by n numbers (coordinates) near any point

Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface
set that can be parametrized by n numbers (coordinates) near any point
we can use the machinery of multivariate calculus (differentiation, integration) on a manifold

Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface
set that can be parametrized by n numbers (coordinates) near any point
we can use the machinery of multivariate calculus (differentiation, integration) on a manifold
we can use tensor algebra on a manifold

Manifolds and differential geometry

Manifold

generalization of the notion of a (n-dimensional) surface
set that can be parametrized by n numbers (coordinates) near any point
we can use the machinery of multivariate calculus (differentiation, integration) on a manifold
we can use tensor algebra on a manifold
most important notion: local coordinate system(s)

Manifolds and differential geometry

Manifold $M,\left\{\left(\mathscr{U}_{\alpha}, \phi_{\alpha}\right)\right\}$

-! -

Manifolds and differential geometry

Manifolds and differential geometry

Manifolds and differential geometry

Manifolds and differential geometry

Manifold

topological space

atlas of charts (coordinate systems)

charts are usually local

Manifolds and differential geometry

Manifold

topological space

atlas of charts (coordinate systems)

charts are usually local
many manifolds do not have a single, global chart

Manifolds and differential geometry

Manifold

topological space

atlas of charts (coordinate systems)

charts are usually local
many manifolds do not have a single, global chart
transition maps
$\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ coordinate transforms

Manifolds and differential geometry

Manifold

topological space

$m,\left\{\left(u u_{0}, 0\right)\right\}$
atlas of charts (coordinate systems)
charts are usually local
many manifolds do not have a single, global chart
transition maps
$\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ coordinate transforms

We can always define new charts (enlarge the atlas), by picking the domain and transition maps

Manifolds and differential geometry

Functions (scalars)
coordinate systems

$$
f \circ \phi_{1}^{-1}: \phi_{1}\left(\mathscr{U}_{1}\right) \rightarrow \mathbf{R}
$$

$$
f\left(x^{1}, \ldots, x^{n}\right)
$$

$$
\begin{aligned}
& f \circ \phi_{2}^{-1}: \phi_{2}\left(\mathscr{U}_{2}\right) \rightarrow \mathbf{R} \\
& f\left(y^{\overline{1}}, \ldots, y^{\bar{n}}\right)
\end{aligned}
$$

Manifolds and differential geometry

Functions (scalars)
coordinate systems

$$
\begin{aligned}
& f \circ \phi_{1}^{-1}: \phi_{1}\left(\mathscr{U}_{1}\right) \rightarrow \mathbf{R} \\
& f\left(x^{1}, \ldots, x^{n}\right)
\end{aligned}
$$

$$
f\left(y^{\bar{k}}\right)=f\left(x^{l}\left(y^{\bar{k}}\right)\right)
$$

$$
f \circ \phi_{2}^{-1}: \phi_{2}\left(\mathscr{U}_{2}\right) \rightarrow \mathbf{R}
$$

$$
f\left(y^{\overline{1}}, \ldots, y^{\bar{n}}\right)
$$

Manifolds and differential geometry

Vectors

vectors always defined at a point

M

Manifolds and differential geometry

Vectors

vectors always defined at a point
vectors at different points form different vector spaces (tangent spaces), we cannot add or combine them!

Manifolds and differential geometry

Vectors

vectors always defined at a point
vectors at different points form different vector spaces (tangent spaces), we cannot add or combine them!
vectors do not connect distant points

Manifolds and differential geometry

Vectors

vectors always defined at a point
vectors at different points form different vector spaces (tangent spaces), we cannot add or combine them!
vectors do not connect distant points
dimension of tangent spaces $\operatorname{dim} T_{p} M=n$

Manifolds and differential geometry

Vectors

vectors always defined at a point
vectors at different points form different vector spaces (tangent spaces), we cannot add or combine them!
vectors do not connect distant points
dimension of tangent spaces $\operatorname{dim} T_{p} M=n$
geometric intuitions
infinitesimal variation a point (or its coordinates)

$$
\delta x^{i}=X_{p}^{i} \delta \epsilon
$$

tangent vector/velocity

$$
X_{p}^{i}=\frac{d x^{i}}{d \lambda}
$$

Manifolds and differential geometry

Vectors
transformation laws under coordinate transform

$$
\begin{array}{ll}
\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto & \left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
X_{p}^{\bar{i}}=\frac{d y^{\bar{i}}}{d \lambda} &
\end{array}
$$

M

Manifolds and differential geometry

Vectors
transformation laws under coordinate transform

$$
\begin{aligned}
& \left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
& X_{p}^{\bar{i}}=\frac{d y^{\bar{i}}}{d \lambda} \\
& X_{p}^{i}=\frac{d x^{i}}{d \lambda}=\left.\frac{\partial x^{i}}{\partial y^{\bar{i}}}\right|_{p} \cdot \frac{d y^{\bar{i}}}{d \lambda} \quad \text { chain rule }
\end{aligned}
$$

$$
M
$$

Manifolds and differential geometry

Vectors
transformation laws under coordinate transform

$$
\begin{aligned}
& \left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
& X_{p}^{\bar{i}}=\frac{d y^{\bar{i}}}{d \lambda} \\
& X_{p}^{i}=\frac{d x^{i}}{d \lambda}=\left.\frac{\partial x^{i}}{\partial y^{\bar{i}}}\right|_{p} \cdot \frac{d y^{\bar{i}}}{d \lambda} \quad \text { chain rule } \\
& \Rightarrow X_{p}^{\bar{i}} \rightarrow X_{p}^{i}=\left.\frac{\partial x^{i}}{\partial y^{\bar{i}}}\right|_{p} X_{p}^{\bar{i}} \\
& \text { Jacobian }\left(\frac{\partial x}{\partial y}\right)
\end{aligned}
$$

Manifolds and differential geometry

Co-vectors

co-vectors also always defined at a point

Manifolds and differential geometry

Co-vectors

co-vectors also always defined at a point
co-vectors at different points form different vector spaces (co-tangent spaces), we cannot add or combine them!

Manifolds and differential geometry

Co-vectors

co-vectors also always defined at a point
co-vectors at different points form different vector spaces (co-tangent spaces), we cannot add or combine them!
dimension of co-tangent spaces $\operatorname{dim} T_{p}^{*} M=n$

$$
M
$$

Manifolds and differential geometry

Co-vectors

co-vectors also always defined at a point
co-vectors at different points form different vector spaces (co-tangent spaces), we cannot add or combine them!
dimension of co-tangent spaces $\operatorname{dim} T_{p}^{*} M=n$
geometric intuitions
infinitesimal variation of a function

$$
\delta f=\omega_{i} \delta x^{i}
$$

gradient

$$
\omega_{i}(p)=\left.\frac{\partial f}{\partial x^{i}}\right|_{p}
$$

Manifolds and differential geometry

Co-vectors

transformation laws under coordinate transform

$$
\begin{aligned}
& \left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
& \omega_{\bar{i}}(p)=\left.\frac{\partial f}{\partial y^{\bar{i}}}\right|_{p}
\end{aligned}
$$

M

Manifolds and differential geometry

Co-vectors

transformation laws under coordinate transform

$$
\begin{aligned}
& \left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
& \omega_{\bar{i}}(p)=\left.\frac{\partial f}{\partial y^{\bar{i}}}\right|_{p} \\
& \omega_{i}(p)=\frac{\partial f}{\partial x^{i}}=\left.\frac{\partial f}{\partial y^{\bar{i}}} \cdot \frac{\partial y^{\bar{i}}}{\partial x^{i}}\right|_{p} \text { chain rule }
\end{aligned}
$$

$$
M
$$

Manifolds and differential geometry

Co-vectors

transformation laws under coordinate transform

$$
\begin{aligned}
& \left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{u}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
& x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
& \omega_{\bar{i}}(p)=\left.\frac{\partial f}{\partial y^{\bar{i}}}\right|_{p} \\
& \omega_{i}(p)=\frac{\partial f}{\partial x^{i}}=\left.\frac{\partial f}{\partial y^{\bar{i}}} \cdot \frac{\partial y^{\bar{i}}}{\partial x^{i}}\right|_{p} \text { chain rule } \\
& \Rightarrow \omega_{\bar{i}}(p) \rightarrow \omega_{i}(p)=\left.\omega_{\bar{i}}(p) \cdot \frac{\partial y^{\bar{i}}}{\partial x^{i}}\right|_{p}
\end{aligned}
$$

Manifolds and differential geometry

Co-vectors
transformation laws under coordinate transform

$$
\begin{gathered}
\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto\left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
\omega_{\bar{i}}(p)=\left.\frac{\partial f}{\partial y^{\bar{i}}}\right|_{p} \\
\omega_{i}(p)=\frac{\partial f}{\partial x^{i}}=\left.\frac{\partial f}{\partial y^{\bar{i}}} \cdot \frac{\partial y^{\bar{i}}}{\partial x^{i}}\right|_{p} \text { chain rule } \\
\Rightarrow \omega_{\bar{i}}(p) \rightarrow \omega_{i}(p)=\left.\omega_{\bar{i}}(p) \cdot \frac{\partial y^{\bar{i}}}{\partial x^{i}}\right|_{p} \\
\frac{\partial x^{i}}{\partial y^{\bar{j}}} \cdot \frac{\partial y^{\bar{j}}}{\partial x^{k}}=\delta_{k}^{i} \quad \text { inverse Jacobian }\left(\frac{\partial y}{\partial x}\right)=\left(\frac{\partial x}{\partial y}\right)^{-1}
\end{gathered}
$$

Manifolds and differential geometry

Tensors

transformation laws under coordinate transform

$$
\begin{array}{ll}
\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto & \left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions } \\
T_{\bar{k} \bar{l} \ldots}^{\bar{i} \ldots}(p) \quad \text { tensor coordinates in }\left(y^{\bar{i}}\right)
\end{array}
$$

Manifolds and differential geometry

Tensors
transformation laws under coordinate transform

$$
\begin{array}{ll}
\left(y^{\overline{1}}, y^{\overline{2}}, \ldots, y^{\bar{n}}\right) \mapsto & \left(x^{1}, x^{2}, \ldots, x^{n}\right) \\
x^{k}\left(y^{\bar{i}}\right) \quad \text { given functions }
\end{array}
$$

$$
T_{\bar{k} \bar{\ldots} \ldots}^{\bar{i} \bar{\ldots}}(p) \quad \text { tensor coordinates in }\left(y^{\bar{i}}\right)
$$

M

$$
\text { inverse Jacobian }\left(\frac{\partial y}{\partial x}\right)=\left(\frac{\partial x}{\partial y}\right)^{-1}
$$

Manifolds and differential geometry

Remarks

We usually work with vector/co-vector/tensor fields $T^{i j \ldots}{ }_{k l \ldots}\left(x^{m}\right)$

Need to change the argument when changing coordinates

Manifolds and differential geometry

Remarks

We usually work with vector/co-vector/tensor fields $T^{i j \ldots}{ }_{k l \ldots}\left(x^{m}\right)$

Need to change the argument when changing coordinates

At each (co-)tangent space we are decomposing tensors in so-called coordinate basis, related to a given coordinate system (say $\left(x^{i}\right)$). The basis usually isn't orthonormal.

$$
\begin{aligned}
& X_{p}=\left.X_{p}^{i} e_{i} \equiv X_{p}^{i} \partial_{i} \equiv X_{p}^{i} \frac{\partial}{\partial x^{i}}\right|_{p} \\
& \kappa(p)=\kappa_{i}(p) \omega^{i} \equiv \kappa_{i}(p) \mathrm{d} x^{i}
\end{aligned}
$$

Manifolds and differential geometry

Remarks

We usually work with vector/co-vector/tensor fields $T^{i j \ldots}{ }_{k l \ldots}\left(x^{m}\right)$

Need to change the argument when changing coordinates

At each (co-)tangent space we are decomposing tensors in so-called coordinate basis, related to a given coordinate system (say $\left(x^{i}\right)$). The basis usually isn't orthonormal.

$$
\begin{aligned}
& X_{p}=\left.X_{p}^{i} e_{i} \equiv X_{p}^{i} \partial_{i} \equiv X_{p}^{i} \frac{\partial}{\partial x^{i}}\right|_{p} \\
& \kappa(p)=\kappa_{i}(p) \omega^{i} \equiv \kappa_{i}(p) \mathrm{d} x^{i}
\end{aligned}
$$

It is possible to use bases unrelated to the current coordinate system, or bases unrelated to any coordinate system (non-coordinate bases)

Manifolds and differential geometry

Remarks

We usually work with vector/co-vector/tensor fields $T^{i j \ldots}{ }_{k l \ldots}\left(x^{m}\right)$

Need to change the argument when changing coordinates

At each (co-)tangent space we are decomposing tensors in so-called coordinate basis, related to a given coordinate system (say $\left(x^{i}\right)$). The basis usually isn't orthonormal.

$$
\begin{gathered}
X_{p}=\left.X_{p}^{i} e_{i} \equiv X_{p}^{i} \partial_{i} \equiv X_{p}^{i} \frac{\partial}{\partial x^{i}}\right|_{p} \\
\kappa(p)=\kappa_{i}(p) \omega^{i} \equiv \kappa_{i}(p) \mathrm{d} x^{i}
\end{gathered}
$$

It is possible to use bases unrelated to the current coordinate system, or bases unrelated to any coordinate system (non-coordinate bases)

Coordinate transformations = very important thing in GR, we will practice that.

Manifolds and differential geometry

Manifold + tensor field coordinate systems (coordinate bases)

representation in coordinates (in coordinate basis)

$$
T^{i j \ldots}{ }_{k l \ldots}\left(x^{k}\right)
$$

$$
\left(\frac{\partial x^{i}}{\partial y^{i}}\right) \cdots\left(\frac{\partial y^{k}}{\partial x^{k}}\right) \cdots
$$

$$
T^{\bar{i} \bar{\ldots}}{ }_{\bar{k} \bar{l} \ldots}\left(y^{\bar{k}}\right)
$$

End of Lecture 3

