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0 = uμ = ( γ

γvi)
x0 = γx̃0 + γ ⃗v ⋅ ⃗x̃ ⟹ dx0 = γ dx̃0 = γ dτ

dτ = γ−1 dx0 τ(x0) = τ0 + ∫
x0

t0

1 − v2 dx0

proper time : 
τ

its flow matches the coordinate time of 
the co-moving frame

interpretation: time measured by a 
moving perfect clock



Kinematics in SR

20

x0

x1

uu

u ⋅ u = − 1normalized

u0 > 0future-pointing

any co-moving frame has  e0 = u

4-velocity uμ

dτ = dx̃0 ẽμ
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τ

its flow matches the coordinate time of 
the co-moving frame

interpretation: time measured by a 
moving perfect clock

defined intrinsically, by the motion of the 
body

dxμ

dτ
=

dxμ

dx0

dx0
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velocity

xμ(τ)
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a → ã = a − D u
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particle of rest mass m

pμ := m uμ = ( γm
γmvi)

p ⋅ p = − m2

total 4-momentum conserved by local 
forces

energy

momentum

Re-introducing c

pμ
new =

m + 1
2c2 m ⃗v 2

old + O ((vold /c)3)

mvi
old /c + O ((vold /c)3)

Eold = c2 p0 = mc2 +
1
2

m ⃗v 2
old + O ((vold /c)3)

pi
old = c pi = mvi

old + O ((vold /c)3)
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…in any inertial frame!

l → l̃ =
1
C

l

λ → λ̃ = Cλ + D

affine reparametrizations

 not normalizablel

 no 4-velocity or proper time for photons⟹

a → ã = a − D l photon’s 4-momentum

pμ :=
E
l0

lμ p ⋅ p = 0

pμ = (E
pi) E = | ⃗p |
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Points connected by light rays

The light cone

timelikeΔxμ Δxν ημν < 0

Inside the light cone

Worldlines of massive particles

Future/past distinction

Future/past distinction

past

future

Δxμ Δxν ημν > 0 spacelike
Outside the light cone

No future/past distinction (somewhere else)

events outside past light cone cannot influence 𝒪
no worldlines outside the light coneNo superluminal interactions:

 cannot influence events outside future light cone 𝒪

𝒪
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End of lecture 1


