Kinematics in SR

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$
any co-moving frame has $e_{0}=u$

Kinematics in SR

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$ any co-moving frame has $e_{0}=u$
proper time τ :
its flow matches the coordinate time of the co-moving frame
interpretation: time measured by a moving perfect clock

Kinematics in SR

$$
\begin{gathered}
d \tau=d \tilde{x}^{0} \quad \tilde{e}_{0}^{\mu}=u^{\mu}=\binom{\gamma}{\gamma v^{i}} \\
x^{0}=\gamma \tilde{x}^{0}+\gamma \vec{v} \cdot \overrightarrow{\tilde{x}} \Longrightarrow d x^{0}=\gamma d \tilde{x}^{0}=\gamma d \tau
\end{gathered}
$$

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$ any co-moving frame has $e_{0}=u$
proper time τ :
its flow matches the coordinate time of the co-moving frame
interpretation: time measured by a moving perfect clock

Kinematics in SR

$$
\begin{gathered}
d \tau=d \tilde{x}^{0} \quad \tilde{e}_{0}^{\mu}=u^{\mu}=\binom{\gamma}{\gamma v^{i}} \\
x^{0}=\gamma \tilde{x}^{0}+\gamma \vec{v} \cdot \overrightarrow{\tilde{x}} \Longrightarrow d x^{0}=\gamma d \tilde{x}^{0}=\gamma d \tau
\end{gathered}
$$

$$
d \tau=\gamma^{-1} d x^{0} \quad \tau\left(x^{0}\right)=\tau_{0}+\int_{t_{0}}^{x^{0}} \sqrt{1-v^{2}} d x^{0}
$$

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$
any co-moving frame has $e_{0}=u$
proper time τ :
its flow matches the coordinate time of the co-moving frame
interpretation: time measured by a moving perfect clock

Kinematics in SR

$$
\begin{gathered}
d \tau=d \tilde{x}^{0} \quad \tilde{e}_{0}^{\mu}=u^{\mu}=\binom{\gamma}{\gamma v^{i}} \\
x^{0}=\gamma \tilde{x}^{0}+\gamma \vec{v} \cdot \overrightarrow{\tilde{x}} \Longrightarrow d x^{0}=\gamma d \tilde{x}^{0}=\gamma d \tau
\end{gathered}
$$

$$
d \tau=\gamma^{-1} d x^{0} \quad \tau\left(x^{0}\right)=\tau_{0}+\int_{t_{0}}^{x^{0}} \sqrt{1-v^{2}} d x^{0}
$$

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$
any co-moving frame has $e_{0}=u$
proper time τ :
its flow matches the coordinate time of the co-moving frame
interpretation: time measured by a moving perfect clock
defined intrinsically, by the motion of the body

Kinematics in SR

$d \tau=d \tilde{x}^{0} \quad \tilde{e}_{0}^{\mu}=u^{\mu}=\binom{\gamma}{\gamma \nu^{i}}$
$x^{0}=\gamma \tilde{x}^{0}+\gamma \vec{v} \cdot \overrightarrow{\tilde{x}} \Longrightarrow d x^{0}=\gamma d \tilde{x}^{0}=\gamma d \tau$
$d \tau=\gamma^{-1} d x^{0} \quad \tau\left(x^{0}\right)=\tau_{0}+\int_{t_{0}}^{x^{0}} \sqrt{1-v^{2}} d x^{0}$
$x^{\mu}(\tau) \quad \frac{d x^{\mu}}{d \tau}=\frac{d x^{\mu}}{d x^{0}} \frac{d x^{0}}{d \tau}=\binom{1}{v^{i}} \gamma=u^{\mu}$

4-velocity u^{μ}
normalized $\quad u \cdot u=-1$
future-pointing $\quad u^{0}>0$
any co-moving frame has $e_{0}=u$

proper time τ :

its flow matches the coordinate time of the co-moving frame
interpretation: time measured by a moving perfect clock
defined intrinsically, by the motion of the body
natural parametrization related to 4velocity

Kinematics in SR

massive particle moving with constant velocity

Kinematics in SR

massive particle moving with constant velocity

$$
x^{\mu}(\tau)=a^{\mu}+\tau u^{\mu}
$$

Kinematics in SR

massive particle moving with constant velocity
$x^{\mu}(\tau)=a^{\mu}+\tau u^{\mu}$
reparametrization:

$$
\begin{aligned}
& \tau \rightarrow \tilde{\tau}=\tau+D \\
& a \rightarrow \tilde{a}=a-D u
\end{aligned}
$$

Kinematics in SR

4-momentum

particle of rest mass m

$$
\begin{aligned}
& p^{\mu}:=m u^{\mu}=\binom{\gamma m}{\gamma m v^{i}} \\
& p \cdot p=-m^{2}
\end{aligned}
$$

total 4-momentum conserved by local forces

Kinematics in SR

4-momentum

particle of rest mass m

$$
\begin{aligned}
& p^{\mu}:=m u^{\mu}=\binom{\gamma m}{\gamma m v^{i}} \\
& p \cdot p=-m^{2}
\end{aligned}
$$

total 4-momentum conserved by local forces
small velocity limit $v \ll 1 \quad v_{\text {old }} / c \ll 1$

$$
\gamma=\left(1-\vec{v}^{2}\right)^{-1 / 2}=1+\frac{1}{2} \vec{v}^{2}+O\left(v^{3}\right)
$$

$p^{\mu}=\binom{m+\frac{1}{2} m \vec{v}^{2}+O\left(v^{3}\right)}{m v^{i}+O\left(v^{3}\right)}$

Kinematics in SR

4-momentum

particle of rest mass m

$$
\begin{aligned}
& p^{\mu}:=m u^{\mu}=\binom{\gamma m}{\gamma m v^{i}} \\
& p \cdot p=-m^{2}
\end{aligned}
$$

total 4-momentum conserved by local forces

Re-introducing c

$$
\begin{aligned}
& p_{\text {new }}^{\mu}=\binom{m+\frac{1}{2 c^{2}} m \vec{v}_{\text {old }}^{2}+O\left(\left(v_{\text {old }} / c\right)^{3}\right)}{m v_{\text {old }}^{i} / c+O\left(\left(v_{\text {old }} / c\right)^{3}\right)} \\
& E_{\text {old }}=c^{2} p^{0}=m c^{2}+\frac{1}{2} m \vec{v}_{\text {old }}^{2}+O\left(\left(v_{\text {old }} / c\right)^{3}\right) \\
& p_{\text {old }}^{i}=c p^{i}=m v_{\text {old }}^{i}+O\left(\left(v_{\text {old }} / c\right)^{3}\right)
\end{aligned}
$$

Kinematics in SR

light rays (worldlines of photons)

$$
\begin{array}{lc}
x^{\mu}(\lambda)=a^{\mu}+\lambda l^{\mu} & l \cdot l=0 \\
& -\left(l^{0}\right)^{2}+\sum_{i} l^{i} l^{i}=0
\end{array}
$$

Kinematics in SR

light rays (worldlines of photons)

$$
\begin{array}{lc}
x^{\mu}(\lambda)=a^{\mu}+\lambda l^{\mu} & l \cdot l=0 \\
& -\left(l^{0}\right)^{2}+\sum_{i} l^{i} l^{i}=0
\end{array}
$$

velocity $=$ speed of light, i.e. 1

$$
\begin{aligned}
& \frac{d x^{i}}{d x^{0}}=\frac{d x^{i}}{d \lambda} \cdot \frac{d \lambda}{d x^{0}}=\frac{l^{i}}{l^{0}} \quad \sum_{i} \frac{l^{i}}{l^{0}} \frac{l^{i}}{l^{0}}=1 \\
& l^{0}=\sqrt{\sum_{i} l^{i} l^{i}} \\
& \ldots \text { in any inertial frame! }
\end{aligned}
$$

Kinematics in SR

affine reparametrizations

$$
\begin{aligned}
& \lambda \rightarrow \tilde{\lambda}=C \lambda+D \\
& l \rightarrow \tilde{l}=\frac{1}{C} l
\end{aligned}
$$

$$
a \rightarrow \tilde{a}=a-D l
$$

l not normalizable
\Longrightarrow no 4-velocity or proper time for photons

Kinematics in SR

affine reparametrizations

$$
\begin{aligned}
& \lambda \rightarrow \tilde{\lambda}=C \lambda+D \\
& l \rightarrow \tilde{l}=\frac{1}{C} l
\end{aligned}
$$

$$
a \rightarrow \tilde{a}=a-D l
$$

l not normalizable
\Longrightarrow no 4-velocity or proper time for photons
light rays (worldlines of photons)

$$
\begin{array}{lc}
x^{\mu}(\lambda)=a^{\mu}+\lambda l^{\mu} & l \cdot l=0 \\
& -\left(l^{0}\right)^{2}+\sum_{i} l^{i} l^{i}=0
\end{array}
$$

velocity $=$ speed of light, i.e. 1

$$
\begin{aligned}
& \frac{d x^{i}}{d x^{0}}=\frac{d x^{i}}{d \lambda} \cdot \frac{d \lambda}{d x^{0}}=\frac{l^{i}}{l^{0}} \quad \sum_{i} \frac{l^{i}}{l^{0}} \frac{l^{i}}{l^{0}}=1 \\
& l^{0}=\sqrt{\sum_{i} l^{i} l^{i}} \\
& \ldots \text { in any inertial frame! }
\end{aligned}
$$

photon's 4-momentum

$$
p^{\mu}:=\frac{E}{l^{0}} l^{\mu} \quad \quad p \cdot p=0
$$

$$
p^{\mu}=\binom{E}{p^{i}} \quad E=|\vec{p}|
$$

Kinematics in SR

light cones, causality

Kinematics in SR

light cones, causality

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}<0 \quad \text { timelike }
$$

Inside the light cone
Worldlines of massive particles
Future/past distinction

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}=0 \quad \text { null }
$$

The light cone
Points connected by light rays
Future/past distinction

Kinematics in SR

$\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}>0$
spacelike
Outside the light cone
No future/past distinction (somewhere else)
light cones, causality

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}<0 \quad \text { timelike }
$$

Inside the light cone
Worldlines of massive particles
Future/past distinction

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}=0 \quad \text { null }
$$

The light cone
Points connected by light rays
Future/past distinction

Kinematics in SR

$\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}>0 \quad$ spacelike
Outside the light cone
No future/past distinction (somewhere else)
light cones, causality

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}<0 \quad \text { timelike }
$$

Inside the light cone
Worldlines of massive particles
Future/past distinction

$$
\Delta x^{\mu} \Delta x^{\nu} \eta_{\mu \nu}=0 \quad \text { null }
$$

The light cone
Points connected by light rays
Future/past distinction

No superluminal interactions:
no worldlines outside the light cone events outside past light cone cannot influence \mathcal{O} \mathcal{O} cannot influence events outside future light cone

Special relativity

End of lecture 1

