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interaction of a GW with harmonic oscillators

tμν =
1

32πG ⟨∂μhTT
αβ ∂νh

αβ
TT⟩

S. Carroll „Spacetime and Geometry: An Introduction to General Relativity” 
Ch. 7.6, p. 307

effective stress-energy tensor for gravitational waves
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S. Carroll „Spacetime and Geometry: An Introduction to General Relativity” 
Ch. 7.6, p. 307

1. Vacuum Einstein equations up to 2nd order

gμν = ημν + h(1)
μν + h(2)

μν Rμν = R(1)
μν + R(2)

μν

R(1)
μν [h(1)

μν ] = 0 quadratic term in 
the expansion of  Ricci

linearized 
Ricci

R(1)
μν [h(2)

μν ] + R(2) [h(1)
μν ] = 0
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1. Vacuum Einstein equations up to 2nd order

gμν = ημν + h(1)
μν + h(2)

μν Rμν = R(1)
μν + R(2)

μν

R(1)
μν [h(1)

μν ] = 0 quadratic term in 
the expansion of  Ricci

linearized 
Ricci

R(1)
μν [h(2)

μν ] + R(2) [h(1)
μν ] = 0

2. Re-writing the equations for h(2)
μν

R(1)
μν [h(2)

αβ ] −
1
2

ημν ηκλR(1)
κλ [h(2)

αβ ] = 8πG tloc
μν

tμν = −
1

8πG (R(2)
μν [h(1)

αβ ] −
1
2

ημν ηκλR(2)
κλ [h(1)

αβ ])

Gravity gravitates!

Higher order terms in metic „feel” 
the gravity of a GW
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This  istloc
μν

• local

• conserved: ∂μtμν
loc = 0

• gauge-dependent

3. Average over many wavelengths ⟨…⟩ = V−1
D ∫D

(…) d4x

tμν = ⟨tloc
μν ⟩

tμν =
1

32πG ⟨∂μhTT
αβ ∂νh

αβ
TT⟩

t0z = F =
h2

0 ω2

32πG


