Geodesic deviation equation

Tidal forces

effect of non-uniform gravitational field
appear in the free-falling frame

Geodesic deviation equation

Tidal forces

effect of non-uniform gravitational field
appear in the free-falling frame

Newtonian approach

$$
\ddot{x}_{0}^{i}=-\phi_{, i}
$$

$$
\ddot{x}_{0}^{i}+\delta \ddot{x}^{i}=-\phi_{, i}\left(x_{0}\right)-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

$$
\Longrightarrow \delta \ddot{x}^{i}=-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

Geodesic deviation equation

Tidal forces

effect of non-uniform gravitational field
appear in the free-falling frame

Newtonian approach

$$
\ddot{x}_{0}^{i}=-\phi_{, i}
$$

$$
\ddot{x}_{0}^{i}+\delta \ddot{x}^{i}=-\phi_{, i}\left(x_{0}\right)-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

$$
\Longrightarrow \delta \ddot{x}^{i}=-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

Tidal tensor

Geodesic deviation equation

Tidal forces

effect of non-uniform gravitational field
appear in the free-falling frame

Newtonian approach

$$
\ddot{x}_{0}^{i}=-\phi_{, i}
$$

$$
\ddot{x}_{0}^{i}+\delta \ddot{x}^{i}=-\phi_{, i}\left(x_{0}\right)-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

$$
\Longrightarrow \delta \ddot{x}^{i}=-\phi_{, i j}\left(x_{0}\right) \delta x^{j}+O\left(\delta x^{2}\right)
$$

Tidal tensor

Responsible for tidal deformations, tides etc.

Geodesic deviation equation

GR description

consider a timelike geodesic + slight perturbation

Geodesic deviation equation

GR description

consider a timelike geodesic + slight perturbation
one-parameter family of geodesics $\quad x^{\mu}(\lambda, \epsilon)$
fiducial geodesic $\quad x^{\mu}(\lambda, 0) \equiv \gamma_{0}$
tangent vector $\quad t^{\mu}=\frac{\partial x^{\mu}}{\partial \lambda}$

Geodesic deviation equation

GR description

consider a timelike geodesic + slight perturbation
one-parameter family of geodesics $\quad x^{\mu}(\lambda, \epsilon)$

fiducial geodesic $\quad x^{\mu}(\lambda, 0) \equiv \gamma_{0}$
tangent vector $\quad t^{\mu}=\frac{\partial x^{\mu}}{\partial \lambda}$

$$
x^{\mu}(\lambda, \epsilon)=x^{\mu}(\lambda, 0)+\left.\frac{\partial x^{\mu}}{\partial \epsilon}\right|_{\epsilon=0} \epsilon+O\left(\epsilon^{2}\right)
$$

Geodesic deviation equation

GR description

consider a timelike geodesic + slight perturbation one-parameter family of geodesics $\quad x^{\mu}(\lambda, \epsilon)$

fiducial geodesic

$$
x^{\mu}(\lambda, 0) \equiv \gamma_{0}
$$

tangent vector $\quad t^{\mu}=\frac{\partial x^{\mu}}{\partial \lambda}$

$$
x^{\mu}(\lambda, \epsilon)=x^{\mu}(\lambda, 0)+\left.\frac{\partial x^{\mu}}{\partial \epsilon}\right|_{\epsilon=0} \epsilon+O\left(\epsilon^{2}\right)
$$

$$
\xi^{\mu}(\lambda)
$$

Geodesic deviation equation

GR description

consider a timelike geodesic + slight perturbation one-parameter family of geodesics $\quad x^{\mu}(\lambda, \epsilon)$

fiducial geodesic

$$
x^{\mu}(\lambda, 0) \equiv \gamma_{0}
$$

tangent vector $\quad t^{\mu}=\frac{\partial x^{\mu}}{\partial \lambda}$

$$
x^{\mu}(\lambda, \epsilon)=x^{\mu}(\lambda, 0)+\left.\frac{\partial x^{\mu}}{\partial \epsilon}\right|_{\epsilon=0} \epsilon+O\left(\epsilon^{2}\right)
$$

separation vector

 $\xi^{\mu}(\lambda)$geodesic deviation equation $\quad \nabla_{t} \nabla_{t} \xi^{\mu}-R_{\nu \alpha \beta}^{\mu} t^{\nu} t^{\alpha} \xi^{\beta}=0$

Physical interpretation of the Riemann: governs the tidal forces

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold ($\mathrm{dim}=4$) with a Lorentzian metric

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold ($\mathrm{dim}=4$) with a Lorentzian metric

2. The metric connection defines locally flat coordinates and local inertial frames

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold ($\mathrm{dim}=4$) with a Lorentzian metric
2. The metric connection defines locally flat coordinates and local inertial frames
3. Physical laws in local inertial frames take their SR form

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold ($\mathrm{dim}=4$) with a Lorentzian metric
2. The metric connection defines locally flat coordinates and local inertial frames
3. Physical laws in local inertial frames take their SR form
\Longrightarrow 3'. Free falling particles follow geodesics (massive $=$ timelike, massless $=$ null)

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold $(\operatorname{dim}=4)$ with a Lorentzian metric
2. The metric connection defines locally flat coordinates and local inertial frames
3. Physical laws in local inertial frames take their SR form
\Longrightarrow 3'. Free falling particles follow geodesics (massive = timelike, massless = null)

Something is still missing... Where do we take the $g_{\mu \nu}\left(x^{\alpha}\right)$ from?

Einstein equations

Missing piece of general relativity

1. Spacetime is a manifold ($\mathrm{dim}=4$) with a Lorentzian metric
2. The metric connection defines locally flat coordinates and local inertial frames
3. Physical laws in local inertial frames take their SR form
\Longrightarrow 3'. Free falling particles follow geodesics (massive = timelike, massless = null)
[^0]Something is still missing... Where do we take the $g_{\mu \nu}\left(x^{\alpha}\right)$ from?

Idea: Spacetime geometry influences matter, matter should then influence the geometry

Einstein equations

Newtonian theory: we have the Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

We need its GR counterpart

Einstein equations

Newtonian theory: we have the Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

We need its GR counterpart
What is the counterpart of ϕ, Δ, ρ ?

Ideas:

Einstein equations

Newtonian theory: we have the Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

We need its GR counterpart

What is the counterpart of ϕ, Δ, ρ ?

Ideas:

$$
\ddot{\ddot{x}^{i}}=-\phi_{, i}
$$

$$
\ddot{x}^{\mu}=-\Gamma^{\mu}{ }_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}
$$

Einstein equations

Newtonian theory: we have the Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

We need its GR counterpart
What is the counterpart of ϕ, Δ, ρ ?

Ideas:

$$
\Delta \phi=\phi_{, i j} \delta^{i j}
$$

$\partial^{2} \phi$

$$
\ddot{x}^{\mu}=-\Gamma^{\mu}{ }_{\alpha \beta} \dot{x}^{\alpha} \dot{x}^{\beta}
$$

$$
\begin{gathered}
R^{\mu}{ }_{\nu \alpha \beta}=\partial \Gamma-\partial \Gamma+\Gamma \Gamma-\Gamma \Gamma \\
\underbrace{\partial^{2} g}
\end{gathered}
$$

Einstein equations

Newtonian theory: we have the Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

We need its GR counterpart

What is the counterpart of ϕ, Δ, ρ ?

Ideas:

ρ

$$
R_{\nu \alpha \beta}^{\mu}=\partial \Gamma-\partial \Gamma+\Gamma \Gamma-\Gamma \Gamma
$$

$$
\rho=T^{00}
$$

Einstein equations

Ideas:

We need field equations for the metric $g_{\mu \nu}\left(x^{\alpha}\right)$ as a field

Metric coupled to matter via the curvature $R^{\mu}{ }_{\nu \alpha \beta}$ and stress-energy tensor $T^{\mu \nu}$

Einstein equations

Ideas:

We need field equations for the metric $g_{\mu \nu}\left(x^{\alpha}\right)$ as a field

Metric coupled to matter via the curvature $R^{\mu}{ }_{\nu \alpha \beta}$ and stress-energy tensor $T^{\mu \nu}$

$$
T_{\mu \nu}=T_{\nu \mu} \quad \nabla_{\mu} T^{\mu \nu}=0
$$

Maybe $R^{\mu \nu}=\kappa T^{\mu \nu}$?

Einstein equations

Ideas:

We need field equations for the metric $g_{\mu \nu}\left(x^{\alpha}\right)$ as a field

Metric coupled to matter via the curvature $R^{\mu}{ }_{\nu \alpha \beta}$ and stress-energy tensor $T^{\mu \nu}$

$$
T_{\mu \nu}=T_{\nu \mu} \quad \nabla_{\mu} T^{\mu \nu}=0
$$

Maybe $R^{\mu \nu}=\kappa T^{\mu \nu}$?

Problem:

$$
\nabla_{\mu} R^{\mu \nu}=\kappa \nabla_{\mu} T^{\mu \nu}=0
$$

Bianchi identity

$$
\nabla_{\mu} R^{\mu \nu}=\frac{1}{2} R^{, \nu}=0
$$

Einstein equations

Ideas:

We need field equations for the metric $g_{\mu \nu}\left(x^{\alpha}\right)$ as a field
Metric coupled to matter via the curvature $R^{\mu}{ }_{\nu \alpha \beta}$ and stress-energy tensor $T^{\mu \nu}$

$$
T_{\mu \nu}=T_{\nu \mu} \quad \nabla_{\mu} T^{\mu \nu}=0
$$

Maybe $R^{\mu \nu}=\kappa T^{\mu \nu}$?

Problem:

$$
\nabla_{\mu} R^{\mu \nu}=\kappa \nabla_{\mu} T^{\mu \nu}=0
$$

Bianchi identity

$$
\nabla_{\mu} R^{\mu \nu}=\frac{1}{2} R^{, \nu}=0 \quad \Rightarrow R=\mathrm{const}
$$

Strong restriction on admissible geometries

Einstein equations

How about the Einstein tensor:

$$
G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu} \quad ?
$$

Einstein equations

How about the Einstein tensor:

$$
G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu} \quad ?
$$

Bianchi identity $\quad \nabla_{\mu} G^{\mu \nu}=\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right)=\nabla_{\mu} R^{\mu \nu}-\frac{1}{2} R^{, \nu}=0$
Now things fit very well: $\quad G^{\mu \nu}=\kappa T^{\mu \nu}$

Einstein equations

How about the Einstein tensor:

$$
G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu} \quad ?
$$

Bianchi identity $\quad \nabla_{\mu} G^{\mu \nu}=\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right)=\nabla_{\mu} R^{\mu \nu}-\frac{1}{2} R^{, \nu}=0$
Now things fit very well: $\quad G^{\mu \nu}=\kappa T^{\mu \nu}$
it follows automatically that $\nabla_{\mu} T^{\mu \nu}=0$

Einstein equations

How about the Einstein tensor:

$$
G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu} \quad ?
$$

Bianchi identity $\quad \nabla_{\mu} G^{\mu \nu}=\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right)=\nabla_{\mu} R^{\mu \nu}-\frac{1}{2} R^{, \nu}=0$

Now things fit very well: $\quad G^{\mu \nu}=\kappa T^{\mu \nu}$
it follows automatically that $\nabla_{\mu} T^{\mu \nu}=0$
Local energy and momentum conservation built into the theory of gravitation! Compare the Maxwell's equation and local charge conservation:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu} \quad F^{\mu \nu}=-F^{\nu \mu} \\
& \partial_{\nu} J^{\nu}=8 \pi \partial_{\nu} \partial_{\mu} F^{\mu \nu}=0
\end{aligned}
$$

Einstein equations

How about the Einstein tensor:

$$
G^{\mu \nu}=R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu} \quad ?
$$

Bianchi identity $\quad \nabla_{\mu} G^{\mu \nu}=\nabla_{\mu}\left(R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}\right)=\nabla_{\mu} R^{\mu \nu}-\frac{1}{2} R^{, \nu}=0$

Now things fit very well: $\quad G^{\mu \nu}=\kappa T^{\mu \nu}$
it follows automatically that $\nabla_{\mu} T^{\mu \nu}=0$
Local energy and momentum conservation built into the theory of gravitation! Compare the Maxwell's equation and local charge conservation:

$$
\begin{aligned}
& \partial_{\mu} F^{\mu \nu}=4 \pi J^{\nu} \quad F^{\mu \nu}=-F^{\nu \mu} \\
& \partial_{\nu} J^{\nu}=8 \pi \partial_{\nu} \partial_{\mu} F^{\mu \nu}=0
\end{aligned}
$$

...but no additional constraints on the geometry (except the field equations)!

Einstein equations

Consistency with Newtonian theory for small masses and slow motions demands

$$
\kappa=8 \pi G
$$

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- if $c \neq 1$ then $R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=\frac{8 \pi G}{c^{4}} T^{\mu \nu}$

Einstein equations

Consistency with Newtonian theory for small masses and slow motions demands

$$
\kappa=8 \pi G
$$

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- if $c \neq 1$ then $R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=\frac{8 \pi G}{c^{4}} T^{\mu \nu}$
assuming that coordinates $\left[x^{\mu}\right]=\mathrm{m}$

$$
\mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{2}
$$

Einstein equations

Consistency with Newtonian theory for small masses and slow motions demands

$$
\kappa=8 \pi G
$$

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- if $c \neq 1$ then $R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=\frac{8 \pi G}{c^{4}} T^{\mu \nu}$
assuming that coordinates $\left[x^{\mu}\right]=\mathrm{m}$

$$
\mathrm{kg}^{-1} \cdot \mathrm{~m}^{-1} \cdot \mathrm{~s}^{2}
$$

On the other hand:
geometric system of units

$$
\begin{array}{ll}
M_{\text {New }}=\frac{G M_{\text {Old }}}{c^{2}} & {[\mathrm{~m}]} \\
t_{\text {New }}=c t_{\text {Old }} & {[\mathrm{m}]}
\end{array} \quad \Rightarrow R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi T^{\mu \nu}
$$

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- taking the trace $-R=8 \pi G T^{\sigma}{ }_{\sigma}$
$\Rightarrow R^{\mu \nu}=8 \pi G\left(T^{\mu \nu}-\frac{1}{2} T^{\sigma}{ }_{\sigma} g^{\mu \nu}\right) \quad$ alternative form of Einstein equations

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- taking the trace $-R=8 \pi G T^{\sigma}{ }_{\sigma}$

$$
\Rightarrow R^{\mu \nu}=8 \pi G\left(T^{\mu \nu}-\frac{1}{2} T^{\sigma}{ }_{\sigma} g^{\mu \nu}\right) \quad \text { alternative form of Einstein equations }
$$

in particular: vacuum Einstein equations (no matter)

$$
\begin{aligned}
& R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=0 \\
& \text { or simply } \quad R^{\mu \nu}=0
\end{aligned}
$$

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- taking the trace $-R=8 \pi G T^{\sigma}{ }_{\sigma}$

$$
\Rightarrow R^{\mu \nu}=8 \pi G\left(T^{\mu \nu}-\frac{1}{2} T_{\sigma}^{\sigma} g^{\mu \nu}\right) \quad \text { alternative form of Einstein equations }
$$

in particular: vacuum Einstein equations (no matter)

$$
\begin{aligned}
& R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=0 \\
& \text { or simply } \quad R^{\mu \nu}=0
\end{aligned}
$$

- non-linear system of coupled PDE's. Quasi-linear hyperbolic system, initial value problem well-posed (Y. Choquet-Bruhat 1952) given appropriate initial data

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- Einstein equations are covariant: their form is identical in any coordinate system

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- Einstein equations are covariant: their form is identical in any coordinate system

Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

Cartesian coordinates

$$
\phi_{, x x}+\phi_{, y y}+\phi_{, z z}=4 \pi G \rho
$$

Cylindrical coordinates

$$
\phi_{, r r}+\frac{1}{r}, \phi_{, r}+\frac{1}{r^{2}} \phi_{, \varphi \varphi}+\phi_{, z z}=4 \pi G \rho
$$

Einstein equations

Einstein equations:

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

Remarks:

- Einstein equations are covariant: their form is identical in any coordinate system

Poisson equation

$$
\Delta \phi=4 \pi G \rho
$$

Cartesian coordinates

$$
\phi_{, x x}+\phi_{, y y}+\phi_{, z z}=4 \pi G \rho
$$

Cylindrical coordinates

$$
\phi_{, r r}+\frac{1}{r}, \phi_{, r}+\frac{1}{r^{2}} \phi_{, \varphi \varphi}+\phi_{, z z}=4 \pi G \rho
$$

Einstein equations

$$
\begin{aligned}
& \Gamma^{\mu}{ }_{\alpha \beta}=\frac{1}{2} g^{\mu \nu}\left(g_{\nu \alpha, \beta}+g_{\nu \beta, \alpha}-g_{\alpha \beta, \nu}\right) \\
& R^{\mu}{ }_{\nu \alpha \beta}=\partial_{\alpha} \Gamma^{\mu}{ }_{\nu \beta}-\partial_{\beta} \Gamma^{\mu}{ }_{\nu \alpha}+\Gamma^{\mu}{ }_{\sigma \alpha} \Gamma^{\sigma}{ }_{\nu \beta}-\Gamma^{\mu}{ }_{\sigma \beta} \Gamma^{\sigma}{ }_{\nu \alpha} \\
& R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G T^{\mu \nu}
\end{aligned}
$$

Einstein equations

Cosmological constant

Einstein equations

Cosmological constant

- Additional term in Einstein equation involving a constant Λ

Einstein equations with cosmological constant

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

$$
\Lambda=\text { const }
$$

Einstein equations

Cosmological constant

- Additional term in Einstein equation involving a constant Λ

Einstein equations with cosmological constant

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

$$
\Lambda=\text { const }
$$

- First proposed by Einstein in 1917 to allow for a static Universe, later dropped when expansion of the Universe discovered in 1920-1930's

Einstein equations

Cosmological constant

- Additional term in Einstein equation involving a constant Λ

Einstein equations with cosmological constant

$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

$$
\Lambda=\text { const }
$$

- First proposed by Einstein in 1917 to allow for a static Universe, later dropped when expansion of the Universe discovered in 1920-1930's
- Later: discovery of accelerated expansion of the Universe (A. Riess et al. 1998, S. Perlmutter et al. 1999) $\Longrightarrow \Lambda$ needed again
distant supernovae appear dimmer than expected from a cosmological model without cosmological constant

Einstein equations

Fig. 4. from Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant Riess et al.Vol. 1161998 AJ 1161009 doi:10.1086/300499
https://dx.doi.org/10.1086/300499
© 1998. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Fig. 1. from Measurements of and from 42 HighRedshift Supernovae
Perlmutter et al. 1999 ApJ 517565 doi:10.1086/307221
https://dx.doi.org/10.1086/307221
© 1999. The American
Astronomical Society. All rights reserved. Printed in
U.S.A.

Nobel Prize 2011: S. Perlmutter, B. P. Schmidt, A. Riess

Einstein equations

Einstein equations

 with cosmological constant$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

- $\Lambda=1.1056 \cdot 10^{-52} \mathrm{~m}^{-2}$
very small, becomes relevant only on cosmological scales
it can be safely neglected in all contexts except the cosmological context

Einstein equations

Einstein equations

 with cosmological constant$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

- $\Lambda=1.1056 \cdot 10^{-52} \mathrm{~m}^{-2}$
very small, becomes relevant only on cosmological scales
it can be safely neglected in all contexts except the cosmological context
- Gravity acts effectively as a repulsive force on extremely large distances!

Einstein equations

Einstein equations

 with cosmological constant$$
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}+\Lambda g^{\mu \nu}=8 \pi G T^{\mu \nu}
$$

- $\Lambda=1.1056 \cdot 10^{-52} \mathrm{~m}^{-2}$
very small, becomes relevant only on cosmological scales it can be safely neglected in all contexts except the cosmological context
- Gravity acts effectively as a repulsive force on extremely large distances!
- Can be considered a special type of fluid with negative pressure $p=-\rho$

$$
\begin{aligned}
R^{\mu \nu}-\frac{1}{2} R g^{\mu \nu}=8 \pi G\left(T^{\mu \nu}-\frac{\Lambda}{8 \pi G} g^{\mu \nu}\right) \\
\begin{array}{l}
\text { energy density } 5.3 \cdot 10^{-10} \mathrm{~J} \mathrm{~m}^{-3} \\
\text { mass density } 5.9 \cdot 10^{-27} \mathrm{~kg} \mathrm{~m}^{-3}
\end{array}
\end{aligned}
$$

Einstein equations

Variational principle for the Einstein equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x
$$

$\delta S_{\phi}=0(+$ boundary terms $) \Longrightarrow$ field equations for ϕ

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]
- Advantages:

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]
- Advantages:
- easy to introduce modifications (alternative gravitation theories)

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]
- Advantages:
- useful for the derivation of the 3+1 decomposition of the Einstein equations (ADM formalism) used in numerical relativity
- easy to introduce modifications (alternative gravitation theories)

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]
- Advantages:
- useful for the definition of total energy, mass, angular momentum
- useful for the derivation of the 3+1 decomposition of the Einstein equations (ADM formalism) used in numerical relativity
- easy to introduce modifications (alternative gravitation theories)

Einstein equations

Variational principle for the Einstein equations

- Variational principle: simple way to define a physical theory and its field equations

$$
S_{\phi}=\int \mathscr{L}\left(\phi, \phi_{, i}\right) d^{4} x \quad \delta S_{\phi}=0(+ \text { boundary terms }) \Longrightarrow \text { field equations for } \phi
$$

- Also possible in general relativity (in more than one way) [Hilbert 1915]
- Advantages:
- useful for the definition of total energy, mass, angular momentum
- useful for the derivation of the 3+1 decomposition of the Einstein equations (ADM formalism) used in numerical relativity
- easy to introduce modifications (alternative gravitation theories)
- useful for quantizing gravity

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

$$
d^{4} x \mapsto d^{4} y\left|\operatorname{det} \Lambda_{\nu^{\prime}}^{\mu}\right|
$$

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

$$
d^{4} x \mapsto d^{4} y\left|\operatorname{det} \Lambda_{\nu^{\prime}}^{\mu}\right| \quad g_{\mu \nu} \mapsto g_{\mu^{\prime} \nu^{\prime}}=g_{\mu \nu} \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu}
$$

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
\begin{gathered}
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \\
\underbrace{x^{\mu} \mapsto y^{\nu^{\prime}}\left(x^{\mu}\right)} \underbrace{\|} g_{\mu \nu} \mapsto g_{\mu^{\prime} \nu^{\prime}}=g_{\mu \nu} \Lambda_{\mu^{\prime}}^{\mu} \Lambda_{\nu^{\prime}}^{\nu} \\
d^{4} x \mapsto d^{4} y\left|\operatorname{det} \Lambda_{\nu^{\prime}}^{\mu}\right| \\
\int \hat{\mathscr{L}}_{g} \sqrt{-g} d^{4} x=\int \hat{\mathscr{L}}_{g} \sqrt{-g^{\prime}}\left|\operatorname{det} \Lambda_{\beta^{\prime}}^{\alpha}\right|^{-1}\left|\operatorname{det} \Lambda_{\sigma^{\prime}}^{\gamma}\right| d^{4} y=g\left(\operatorname{det} \Lambda_{\beta^{\prime}}^{\alpha}\right)^{2} \\
\int \hat{\mathscr{L}}_{g} \sqrt{-g^{\prime}} d^{4} y
\end{gathered}
$$

Einstein equations

Variational principle for the Einstein equations

- The variational principle must be coordinate-system invariant

$$
S_{g}=\int \hat{\mathscr{L}}_{g}(\ldots) \sqrt{-g} d^{4} x \quad g \equiv \operatorname{det} g_{\mu \nu}
$$

Einstein equations

Hilbert's variational principle

- Now $\hat{\mathscr{L}}\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}, \ldots\right)$ needs to be a scalar

How about the Ricci scalar $R \equiv R\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right)$?

Einstein equations

Hilbert's variational principle

- Now $\hat{\mathscr{L}}\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}, \ldots\right)$ needs to be a scalar

How about the Ricci scalar $R \equiv R\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right)$?
It works!

$$
\begin{gathered}
S=S_{g}+S_{m} \\
S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{gathered}
$$

Einstein equations

Hilbert's variational principle

- Now $\hat{\mathscr{L}}\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}, \ldots\right)$ needs to be a scalar

How about the Ricci scalar $R \equiv R\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right)$?
It works!

$$
\begin{gathered}
S=S_{g}+S_{m} \\
S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{gathered}
$$

variation wrt to the metric

$$
\delta S=\int \frac{1}{16 \pi G}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \delta g^{\mu \nu} \sqrt{-g} d^{4} x+\int \frac{\delta S_{m}}{\delta g^{\mu \nu}} \delta g^{\mu \nu} d^{4} x
$$

Einstein equations

Hilbert's variational principle

- Now $\hat{\mathscr{L}}\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}, \ldots\right)$ needs to be a scalar

How about the Ricci scalar $R \equiv R\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right)$?
It works!

$$
\begin{gathered}
S=S_{g}+S_{m} \\
S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{gathered}
$$

variation wrt to the metric

$$
-\frac{1}{2} T_{\mu \nu} \sqrt{-g}
$$

$$
\delta S=\int \frac{1}{16 \pi G}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \delta g^{\mu \nu} \sqrt{-g} d^{4} x+\int \frac{\delta S_{m}}{\delta g^{\mu \nu}} \delta g^{\mu \nu} d^{4} x
$$

Einstein equations

Hilbert's variational principle

- Now $\hat{\mathscr{L}}\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}, \ldots\right)$ needs to be a scalar

How about the Ricci scalar $R \equiv R\left(g_{\alpha \beta}, \partial_{\mu} g_{\alpha \beta}, \partial_{\mu} \partial_{\nu} g_{\alpha \beta}\right)$?
It works!

$$
\begin{gathered}
S=S_{g}+S_{m} \\
S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{gathered}
$$

variation wrt to the metric

$$
-\frac{1}{2} T_{\mu \nu} \sqrt{-g}
$$

$$
\delta S=\int \frac{1}{16 \pi G}\left(R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}\right) \delta g^{\mu \nu} \sqrt{-g} d^{4} x+\int \frac{\delta S_{m}}{\delta g^{\mu \nu}} \delta g^{\mu \nu} d^{4} x
$$

- Palatini's approach: the same Lagrangian, but $R \equiv R\left(\Gamma^{\mu}{ }_{\alpha \beta}, \partial_{\gamma} \Gamma^{\mu}{ }_{\alpha \beta}, g_{\alpha \beta}\right)$

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications
- replace R with $f(R)$

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications
- replace R with $f(R)$
- add terms with higher derivatives of curvature

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications
- replace R with $f(R)$
- add terms with higher derivatives of curvature
- add more fields (scalar, vector, tensor...)

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications
- replace R with $f(R)$
- add terms with higher derivatives of curvature
- add more fields (scalar, vector, tensor...)
- add more dimensions

Einstein equations

Variational principle for Einstein equations

$$
\begin{aligned}
& S=S_{g}+S_{m} \\
& S_{g}=\frac{1}{16 \pi G} \int R \sqrt{-g} d^{4} x \quad S_{m}=\int \hat{\mathscr{L}}_{m}\left(\Phi, \nabla_{\mu} \Phi, g_{\alpha \beta}\right) \sqrt{-g} d^{4} x
\end{aligned}
$$

Details of the derivations:
Palatini's principle: Misner, Thorne, Wheeler „Gravitation", Ch. 21
Hilbert's principle: Sean M. Carroll, „Spacetime and geometry" Ch. 4.3

- Possible modifications
- replace R with $f(R)$
- add terms with higher derivatives of curvature
- add more fields (scalar, vector, tensor...)
- add more dimensions
- ...

Einstein equations

End of lecture 7

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Motivation

The spacetime appears to be almost flat over large regions (except the immediate vicinity of massive compact objects)

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Motivation

The spacetime appears to be almost flat over large regions (except the immediate vicinity of massive compact objects)

Perturbation theory around a flat spacetime seems like a promising approach to solving complicated, non-linear equations

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Motivation

The spacetime appears to be almost flat over large regions (except the immediate vicinity of massive compact objects)

Perturbation theory around a flat spacetime seems like a promising approach to solving complicated, non-linear equations

We obtain linear PDE's, much simpler to understand

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Motivation

The spacetime appears to be almost flat over large regions (except the immediate vicinity of massive compact objects)

Perturbation theory around a flat spacetime seems like a promising approach to solving complicated, non-linear equations

We obtain linear PDE's, much simpler to understand

Need to understand the linearized theory in order to make connection with Newtonian gravity

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Motivation

The spacetime appears to be almost flat over large regions (except the immediate vicinity of massive compact objects)

Perturbation theory around a flat spacetime seems like a promising approach to solving complicated, non-linear equations

We obtain linear PDE's, much simpler to understand

Need to understand the linearized theory in order to make connection with Newtonian gravity

Propagation of gravitational waves over large distances best described by linearized equantions

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

This is a coordinate-dependent construction

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

This is a coordinate-dependent construction

Flat background metric $\eta_{\mu \nu}$ is a useful mathematical tool, but the physical metric is $g_{\mu \nu}$

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

This is a coordinate-dependent construction

Flat background metric $\eta_{\mu \nu}$ is a useful mathematical tool, but the physical metric is $g_{\mu \nu}$
We will neglect all terms $O\left(h^{2}\right)$, including $h \cdot \partial h, \partial h \cdot \partial h, \ldots$

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

This is a coordinate-dependent construction

Flat background metric $\eta_{\mu \nu}$ is a useful mathematical tool, but the physical metric is $g_{\mu \nu}$

We will neglect all terms $O\left(h^{2}\right)$, including $h \cdot \partial h, \partial h \cdot \partial h, \ldots$

Coordinates (x^{μ}) non-unique, we can tweak them a little bit to simplify our life

Linearized Einstein equations

Assumption

There exists a coordinate system $\left(x^{\mu}\right)$ in which $g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{\sigma}\right)$

This is a coordinate-dependent construction

Flat background metric $\eta_{\mu \nu}$ is a useful mathematical tool, but the physical metric is $g_{\mu \nu}$

We will neglect all terms $O\left(h^{2}\right)$, including $h \cdot \partial h, \partial h \cdot \partial h, \ldots$

Coordinates (x^{μ}) non-unique, we can tweak them a little bit to simplify our life

First goal: impose the Einstein equations on $h_{\mu \nu}\left(x^{\sigma}\right)$, find the simplest form of the resulting equations

[^0]: M

