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General relativity - intro

• Current theory of gravitational forces and the geometry of 
spacetime


• Underlies much of astrophysics and cosmology


• Purely classical theory, no quantum effects


• Developed mostly by A. Einstein 1907-1915, influences 
from M. Grossmann, D. Hilbert
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General relativity - intro

• Gravity = weakest of all 4 fundamental interactions (electromagnetic, 
strong, weak, gravitational).


• For 2 protons: 


• It has no preferred length/energy scale


• Becomes significant only if we accumulate large masses


• But: long range interaction, cannot be screened/shielded (unlike EM 
forces).


• Therefore: dominating force on largest scales

Fgrav

FEM
=

G m2
P /r2

e2/(4πϵ0r2)
≈ 10−36
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General relativity - intro
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Special relativity general relativity

black hole theory gravitational waves gravitational lensing

Newtonian gravity 
( + corrections)

cosmology

mathematical physics partial differential 
equations differential geometry



History of GR
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1907-1916 A. Einstein (D. Hilbert, M. Grossman) - development of GR

1917 K. Schwarzschild - first solution: massive body, black hole

1919 A. Eddington - measurement of light ray bending by the Sun

1922-1935 A. Friedmann, G. Lemaître, H. P. Robertson, A. Walker - expanding Universe 
solutions. Beginning of modern (theoretical) cosmology

1920-1950’s Geometry of the Schwarzschild black hole (A. Eddington, G. Lemaître, D. 
Finkelstein, M. Kruskal), event horizon

1916 A. Einstein - gravitational waves in linearized (weak) gravity. But are they real?

1920’s-1960’s Exact GW solutions - Brinkmann, A. Einstein and N. Rosen, J. Ehlers and 
W. Kundt, I. Robinson and A. Trautman 

1960’s A. Trautman, H. Bondi, F. Pirani, I. Robinson - GW are real (carry energy) 

1959 Einstein field equations formulated as evolution equations (R. Arnowitt, S. Deser, 
C. Misner)

1920-1930’s A. Einstein, A. Eddington, R. Mandl… - masses may act as lenses for light



History of GR
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1963 R. Kerr - spinning black hole solution (E. T. Newman, J. N. Goldberg, R. K. Sachs, …)

1990’s-2010’s Numerical relativity (M. Choptuik, …), binary black hole mergers and their GW emission 
(F. Pretorius, …)

2015 First detection of gravitational wave using interferometers (LIGO, Virgo)

2017 Black hole shadow image of M87 (Event Horizon Telescope)

1960’s-1970’s R. Penrose, S. Hawking - singularity theorems (black holes, Big Bang)

1970’s Evidence for Cygnus X-1 being an accreting black hole

1970’s-1990’s evidence for SMBH in the centers of many galaxies

1960’s other tests of GR in Solar System and on Earth: R. Pound and G. Rebka, I. Shapiro, 
R. Dicke…

1979 first strong gravitational lens, double image of a quasar (Walsh, Cardswell, Waymann)

1960’s-1980’s gravitational lensing theory (S. Refsdahl, R. Bourassa, R. Kantowski, 
P. Schneider, B. Paczyński…)

1971-78 double pulsar PSR 1913+16 and effects of its GW emission: R. A. Hulse, J. H. Taylor



History of GR

• 2020 Roger Penrose “for the discovery that black hole formation is a robust prediction of the 
general theory of relativity”, Reinhard Genzel and Andrea Ghez “for the discovery of a 
supermassive compact object at the centre of our galaxy” (black holes)


• 2019 James Peebles “for theoretical discoveries in physical cosmology” (cosmology) 

• 2017 Rainer Weiss, Barry C. Barish and Kip S. Thorne “for decisive contributions to the LIGO 
detector and the observation of gravitational waves” (gravitational waves)


• 2011 Saul Perlmutter, Brian P. Schmidt and Adam G. Riess “for the discovery of the accelerating 
expansion of the Universe through observations of distant supernovae” (cosmology) 

• 2006 John C. Mather and George F. Smoot “for their discovery of the blackbody form and 
anisotropy of the cosmic microwave background radiation” (cosmology)


• 1993 Russell A. Hulse and Joseph H. Taylor Jr. “for the discovery of a new type of pulsar, a 
discovery that has opened up new possibilities for the study of gravitation” (gravitational waves)


• 1983 Subramanyan Chandrasekhar “for his theoretical studies of the physical processes of 
importance to the structure and evolution of the stars”
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Nobel Prizes in Physics related to GR (or distantly related)



Topic 1
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Special relativity - brief summary

ct

x̃

ct̃

x

Just a summary, see:

• B. Schutz, "A First Course in General Relativity” 
• J. B. Hartle, „Gravity: An Introduction to Einstein’s General Relativity” 
• … 



Special relativity

• Physical phenomena take place in spacetime (4D object)


• Affine space with 3+1 dimensions

9

𝒪

• points = events
x

indices, not exponents
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• Physical phenomena take place in spacetime (4D object)


• Affine space with 3+1 dimensions
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𝒪

• points = events
x

(ct, x, y, z) = (x0, x1, x2, x3)x − 𝒪 = x0 e0 + x1 e1 + x2 e2 + x3 e3

• Inertial frame = idealized system of 
synchronized clocks and ranging/
measuring devices used for 
assigning coordinates to points

e0

e1

e2
e3

• mathematical definition: basis of 4 vectors, defining the coordinate system 

indices, not exponents



Special relativity

𝒪

• frame usually connected to a physical 
observer (body)

x

(ct, x, y, z) = (x0, x1, x2, x3)x − 𝒪 = x0 e0 + x1 e1 + x2 e2 + x3 e3

e0

e1

e2
e3

• mathematical definition: basis of 4 vectors, defining the coordinate system 

indices, not exponents

• Intuition:  corresponds to time flow (motion of an observer related to that frame)


• , ,  define purely spatial directions, orthonormal. Span a 3-space

e0

e1 e2 e3
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• geometry of 3-space = Euclidean

x1 = x2 = x2 = 0



Special relativity - postulates
• Special relativity has been derived from the following assumptions:
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Special relativity - postulates
• Special relativity has been derived from the following assumptions:
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• Principle of relativity - inertial frames move with respect to each other with 
constant velocity. They are equivalent from the point of view of mechanics (and 
other physical laws)

identical experiments  the same results in any inertial frame ⟹

cannot detect absolute velocity of an inertial frame without an external reference (no 
absolute motion)

laws of physics take a simple form in inertial frames

assumed also in Newtonian mechanics



Special relativity - postulates
• Special relativity has been derived from the following assumptions:
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• Speed of light in vacuum is constant - speed of light in vacuum is exactly
 as measured in any inertial framec = 299 792 458 m/s

we need to abandon:

standard notion of global, absolute time (relativity of simultaneity, time dilation)

notion of frame-independent distances (Lorentz contraction)

additivity of velocities

• Principle of relativity - inertial frames move with respect to each other with 
constant velocity. They are equivalent from the point of view of mechanics (and 
other physical laws)

identical experiments  the same results in any inertial frame ⟹

cannot detect absolute velocity of an inertial frame without an external reference (no 
absolute motion)

laws of physics take a simple form in inertial frames

assumed also in Newtonian mechanics



Special relativity
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𝒪

e0

e1

e2
e3

xInertial frames related to each other by

Lorentz transformations



Special relativity
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𝒪

e0

e1

e2
e3

xInertial frames related to each other by

Lorentz transformations

+bμ if we shift the origin

ΛTηΛ = η η =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ẽν =
3

∑
μ=0

(Λ−1)μ
ν

eμ

x̃μ =
3

∑
ν=0

Λμ
ν xν

ẽ0

ẽ1
ẽ2

ẽ3



Special relativity
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𝒪

e0

e1

e2
e3

xInertial frames related to each other by

Lorentz transformations

+bμ if we shift the origin

ΛTηΛ = η η =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ẽν =
3

∑
μ=0

(Λ−1)μ
ν

eμ

x̃μ =
3

∑
ν=0

Λμ
ν xν

ẽ0

ẽ1
ẽ2

ẽ3

transforms in general mix time and space dimensions



Special relativity
• Invariant interval between events
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Δs2 = − (Δx0)2 + (Δx1)2 + (Δx2)2 + (Δx3)2

u − w = (Δx0) e0 + (Δx1) e1 + (Δx2) e2 + (Δx3) e3

𝒪

e0

e1

e2
e3

u

ẽ0

ẽ1
ẽ2

ẽ3

w
Δs2 = − (Δx̃0)2 + (Δx̃1)2 + (Δx̃2)2 + (Δx̃3)2

We may also define an invariant 
product of vectors

X ⋅ Y = − X0Y 0 + X1Y1 + X2Y2 + X3Y3 = ∑
μ,ν

Xμ Yν ημν

Δs2 = (u − w) ⋅ (u − w)

NOT positive definite, for two different 
points   may be > 0, < 0 and =0 u, w Δs2



SR vs. Newtonian physics
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ct

x̃

ct̃

x

t t̃

xx̃

t = const

ct̃ = γ ct − γ
v x
c

x̃ = γ
v
c

ct − γ x

t̃ = t

x̃ = x − vt

Inertial frame (observer)  and , moving with velocity  in direction  wrt 𝒪 �̃� v x 𝒪

γ ≡
1

1 − v2

c2



Lorentz boosts
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ct

x̃

ct̃

x

General boost with velocity ⃗v

ct̃ = γ ct − γ
3

∑
i=1

vi

c
xi

x̃i = − γ
vi

c
ct + γ xi

∥ + xi
⊥

γ ≡
1

1 − ⃗v 2

c2



Lorentz boosts
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ct

x̃

ct̃

x

General boost with velocity ⃗v

ct̃ = γ ct − γ
3

∑
i=1

vi

c
xi

x̃i = − γ
vi

c
ct + γ xi

∥ + xi
⊥

Inverse relation:  ⃗v → − ⃗v

ct = γ ct̃ + γ
3

∑
i=1

vi

c
x̃i

xi = γ
vi

c
ct̃ + γ x̃i

γ ≡
1

1 − ⃗v 2

c2



Special relativity

16

Conventions simplifying life:  

measure time with meters tNew = c tOld [m]

vNew = vOld /c [1]

cNew = 1 simplifies many formulas
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Conventions simplifying life:  

measure time with meters tNew = c tOld [m]

vNew = vOld /c [1]

cNew = 1 simplifies many formulas

Einstein’s summation convention

aμ bμ ≡
3

∑
μ=0

aμ bμ = a0 b0 + a1 b1 + a2 b2 + a3 b3

cμν dμ eν ≡
3

∑
μ=0

3

∑
ν=0

cμν dμ eν =
3

∑
ν=0

3

∑
μ=0

cμν dμ eν

Greek indices = 0, 1, 2, 3

index contracted with another index 

cμν dμ eν ≡ c00 d0 e0 + c01 d0 e1 + c02 d0 e2 + c03 d0 e3

+c20 d2 e0 + c21 d2 e1 + c22 d2 e2 + c23 d2 e3

+c10 d1 e0 + c11 d1 e1 + c12 d1 e2 + c13 d1 e3

+c30 d3 e0 + c31 d3 e1 + c32 d3 e2 + c33 d3 e3



Einstein’s summation condition cont.

aμ bμ = aα bα = aγ bγ = ⋯ = a0 b0 + a1 b1 + a2 b2 + a3 b3

cμν dμ eν ≠ cμν dν eμbut

aμ bμ = bμ aμ

cμν dμ eν = cμν eν dμ = dμ eν cμν = ⋯

Special relativity

17



Einstein’s summation condition cont.
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Einstein’s summation condition cont.

aμ bμ = aα bα = aγ bγ = ⋯ = a0 b0 + a1 b1 + a2 b2 + a3 b3

cμν dμ eν ≠ cμν dν eμbut

aμ bμ = bμ aμ

cμν dμ eν = cμν eν dμ = dμ eν cμν = ⋯

aμ bμ, cσ dσ undefined

aα bα cα undefined

Dummy (summation) indices vs free indices

x̃μ = Λμ
ν xν

x̃0 = Λ0
ν xν

x̃1 = Λ1
ν xν

x̃2 = Λ2
ν xν

x̃3 = Λ3
ν xν
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Special relativity
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x̃0

x̃1

x̃2

x̃3

=

γ −γ v1 −γ v2 −γ v3

−γ v1 1 + γ − 1
⃗v 2 (v1)2 γ − 1

⃗v 2
v1 v2 γ − 1

⃗v 2
v1 v3

−γ v2 γ − 1
⃗v 2

v1 v2 1 + γ − 1
⃗v 2 (v2)2 γ − 1

⃗v 2
v2 v3

−γ v3 γ − 1
⃗v 2

v1 v3 γ − 1
⃗v 2

v2 v3 1 + γ − 1
⃗v 2 (v3)2

x0

x1

x2

x3

(t, xi) ≡ (x0, xi)

γ =
1

1 − ⃗v 2

General Lorentz boost to frame moving with velocity   ⃗v

Λμ
ν( ⃗v )

Λ( ⃗v )−1 = Λ(− ⃗v )



Kinematics in SR
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Motions of massive particles described by worldlines xμ(λ)

x0

x1
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Motions of massive particles described by worldlines xμ(λ)

simplest parametrization: coordinate time

xμ(x0) =

x0

x1(x0)
x2(x0)
x3(x0)

d xμ(x0)
dx0

=

1
v1

v2

v3

x0

x1
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Motions of massive particles described by worldlines xμ(λ)

simplest parametrization: coordinate time

xμ(x0) =

x0

x1(x0)
x2(x0)
x3(x0)

d xμ(x0)
dx0

=

1
v1

v2

v3

x0

x1

⃗v < 1 ⟺
dxμ(x0)

dx0

dxν(x0)
dx0

ημν < 0
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Motions of massive particles described by worldlines xμ(λ)

simplest parametrization: coordinate time

xμ(x0) =

x0

x1(x0)
x2(x0)
x3(x0)

d xμ(x0)
dx0

=

1
v1

v2

v3

x0

x1

(momentrarily) comoving frame: 

ẽμ
0 = C (1

vi)
ẽμ

0 ẽ0 μ = − 1 ⟹ C =
1

1 − v2
≡ γ

ẽ0

ẽ1

⃗v < 1 ⟺
dxμ(x0)

dx0

dxν(x0)
dx0

ημν < 0
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Motions of massive particles described by worldlines xμ(λ)

simplest parametrization: coordinate time

xμ(x0) =

x0

x1(x0)
x2(x0)
x3(x0)

d xμ(x0)
dx0

=

1
v1

v2

v3

x0

x1

(momentrarily) comoving frame: 

ẽμ
0 = C (1

vi)
ẽμ

0 ẽ0 μ = − 1 ⟹ C =
1

1 − v2
≡ γ

ẽ0

ẽ1

ẽμ
0 = uμ = ( γ

γvi)
Body’s momentary 4-velocity uμ

⃗v < 1 ⟺
dxμ(x0)

dx0

dxν(x0)
dx0

ημν < 0


